Solve for Q
Q\leq \frac{209}{320}
Share
Copied to clipboard
\frac{81}{64}\times 3\geq 15Q-6
Multiply both sides by 3. Since 3 is positive, the inequality direction remains the same.
\frac{81\times 3}{64}\geq 15Q-6
Express \frac{81}{64}\times 3 as a single fraction.
\frac{243}{64}\geq 15Q-6
Multiply 81 and 3 to get 243.
15Q-6\leq \frac{243}{64}
Swap sides so that all variable terms are on the left hand side. This changes the sign direction.
15Q\leq \frac{243}{64}+6
Add 6 to both sides.
15Q\leq \frac{243}{64}+\frac{384}{64}
Convert 6 to fraction \frac{384}{64}.
15Q\leq \frac{243+384}{64}
Since \frac{243}{64} and \frac{384}{64} have the same denominator, add them by adding their numerators.
15Q\leq \frac{627}{64}
Add 243 and 384 to get 627.
Q\leq \frac{\frac{627}{64}}{15}
Divide both sides by 15. Since 15 is positive, the inequality direction remains the same.
Q\leq \frac{627}{64\times 15}
Express \frac{\frac{627}{64}}{15} as a single fraction.
Q\leq \frac{627}{960}
Multiply 64 and 15 to get 960.
Q\leq \frac{209}{320}
Reduce the fraction \frac{627}{960} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}