Solve for y
y = \frac{\sqrt{413629} + 767}{30} \approx 47.004665122
y = \frac{767 - \sqrt{413629}}{30} \approx 4.128668211
Graph
Share
Copied to clipboard
-y\times 81+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
Variable y cannot be equal to any of the values 0,41 since division by zero is not defined. Multiply both sides of the equation by y\left(y-41\right), the least common multiple of 41-y,y.
-81y+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
Multiply -1 and 81 to get -81.
-81y+\left(y^{2}-41y\right)\times 15=\left(y-41\right)\times 71
Use the distributive property to multiply y by y-41.
-81y+15y^{2}-615y=\left(y-41\right)\times 71
Use the distributive property to multiply y^{2}-41y by 15.
-696y+15y^{2}=\left(y-41\right)\times 71
Combine -81y and -615y to get -696y.
-696y+15y^{2}=71y-2911
Use the distributive property to multiply y-41 by 71.
-696y+15y^{2}-71y=-2911
Subtract 71y from both sides.
-767y+15y^{2}=-2911
Combine -696y and -71y to get -767y.
-767y+15y^{2}+2911=0
Add 2911 to both sides.
15y^{2}-767y+2911=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-767\right)±\sqrt{\left(-767\right)^{2}-4\times 15\times 2911}}{2\times 15}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15 for a, -767 for b, and 2911 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-767\right)±\sqrt{588289-4\times 15\times 2911}}{2\times 15}
Square -767.
y=\frac{-\left(-767\right)±\sqrt{588289-60\times 2911}}{2\times 15}
Multiply -4 times 15.
y=\frac{-\left(-767\right)±\sqrt{588289-174660}}{2\times 15}
Multiply -60 times 2911.
y=\frac{-\left(-767\right)±\sqrt{413629}}{2\times 15}
Add 588289 to -174660.
y=\frac{767±\sqrt{413629}}{2\times 15}
The opposite of -767 is 767.
y=\frac{767±\sqrt{413629}}{30}
Multiply 2 times 15.
y=\frac{\sqrt{413629}+767}{30}
Now solve the equation y=\frac{767±\sqrt{413629}}{30} when ± is plus. Add 767 to \sqrt{413629}.
y=\frac{767-\sqrt{413629}}{30}
Now solve the equation y=\frac{767±\sqrt{413629}}{30} when ± is minus. Subtract \sqrt{413629} from 767.
y=\frac{\sqrt{413629}+767}{30} y=\frac{767-\sqrt{413629}}{30}
The equation is now solved.
-y\times 81+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
Variable y cannot be equal to any of the values 0,41 since division by zero is not defined. Multiply both sides of the equation by y\left(y-41\right), the least common multiple of 41-y,y.
-81y+y\left(y-41\right)\times 15=\left(y-41\right)\times 71
Multiply -1 and 81 to get -81.
-81y+\left(y^{2}-41y\right)\times 15=\left(y-41\right)\times 71
Use the distributive property to multiply y by y-41.
-81y+15y^{2}-615y=\left(y-41\right)\times 71
Use the distributive property to multiply y^{2}-41y by 15.
-696y+15y^{2}=\left(y-41\right)\times 71
Combine -81y and -615y to get -696y.
-696y+15y^{2}=71y-2911
Use the distributive property to multiply y-41 by 71.
-696y+15y^{2}-71y=-2911
Subtract 71y from both sides.
-767y+15y^{2}=-2911
Combine -696y and -71y to get -767y.
15y^{2}-767y=-2911
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{15y^{2}-767y}{15}=-\frac{2911}{15}
Divide both sides by 15.
y^{2}-\frac{767}{15}y=-\frac{2911}{15}
Dividing by 15 undoes the multiplication by 15.
y^{2}-\frac{767}{15}y+\left(-\frac{767}{30}\right)^{2}=-\frac{2911}{15}+\left(-\frac{767}{30}\right)^{2}
Divide -\frac{767}{15}, the coefficient of the x term, by 2 to get -\frac{767}{30}. Then add the square of -\frac{767}{30} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{767}{15}y+\frac{588289}{900}=-\frac{2911}{15}+\frac{588289}{900}
Square -\frac{767}{30} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{767}{15}y+\frac{588289}{900}=\frac{413629}{900}
Add -\frac{2911}{15} to \frac{588289}{900} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{767}{30}\right)^{2}=\frac{413629}{900}
Factor y^{2}-\frac{767}{15}y+\frac{588289}{900}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{767}{30}\right)^{2}}=\sqrt{\frac{413629}{900}}
Take the square root of both sides of the equation.
y-\frac{767}{30}=\frac{\sqrt{413629}}{30} y-\frac{767}{30}=-\frac{\sqrt{413629}}{30}
Simplify.
y=\frac{\sqrt{413629}+767}{30} y=\frac{767-\sqrt{413629}}{30}
Add \frac{767}{30} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}