Evaluate
\frac{809}{27}\approx 29.962962963
Factor
\frac{809}{3 ^ {3}} = 29\frac{26}{27} = 29.962962962962962
Share
Copied to clipboard
\begin{array}{l}\phantom{27)}\phantom{1}\\27\overline{)809}\\\end{array}
Use the 1^{st} digit 8 from dividend 809
\begin{array}{l}\phantom{27)}0\phantom{2}\\27\overline{)809}\\\end{array}
Since 8 is less than 27, use the next digit 0 from dividend 809 and add 0 to the quotient
\begin{array}{l}\phantom{27)}0\phantom{3}\\27\overline{)809}\\\end{array}
Use the 2^{nd} digit 0 from dividend 809
\begin{array}{l}\phantom{27)}02\phantom{4}\\27\overline{)809}\\\phantom{27)}\underline{\phantom{}54\phantom{9}}\\\phantom{27)}26\\\end{array}
Find closest multiple of 27 to 80. We see that 2 \times 27 = 54 is the nearest. Now subtract 54 from 80 to get reminder 26. Add 2 to quotient.
\begin{array}{l}\phantom{27)}02\phantom{5}\\27\overline{)809}\\\phantom{27)}\underline{\phantom{}54\phantom{9}}\\\phantom{27)}269\\\end{array}
Use the 3^{rd} digit 9 from dividend 809
\begin{array}{l}\phantom{27)}029\phantom{6}\\27\overline{)809}\\\phantom{27)}\underline{\phantom{}54\phantom{9}}\\\phantom{27)}269\\\phantom{27)}\underline{\phantom{}243\phantom{}}\\\phantom{27)9}26\\\end{array}
Find closest multiple of 27 to 269. We see that 9 \times 27 = 243 is the nearest. Now subtract 243 from 269 to get reminder 26. Add 9 to quotient.
\text{Quotient: }29 \text{Reminder: }26
Since 26 is less than 27, stop the division. The reminder is 26. The topmost line 029 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 29.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}