Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{400\sqrt{2}}{\frac{\sqrt{6}-\sqrt{2}}{4}}
Cancel out 2, the greatest common factor in 800 and 2.
\frac{400\sqrt{2}\times 4}{\sqrt{6}-\sqrt{2}}
Divide 400\sqrt{2} by \frac{\sqrt{6}-\sqrt{2}}{4} by multiplying 400\sqrt{2} by the reciprocal of \frac{\sqrt{6}-\sqrt{2}}{4}.
\frac{400\sqrt{2}\times 4\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}
Rationalize the denominator of \frac{400\sqrt{2}\times 4}{\sqrt{6}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{2}.
\frac{400\sqrt{2}\times 4\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{400\sqrt{2}\times 4\left(\sqrt{6}+\sqrt{2}\right)}{6-2}
Square \sqrt{6}. Square \sqrt{2}.
\frac{400\sqrt{2}\times 4\left(\sqrt{6}+\sqrt{2}\right)}{4}
Subtract 2 from 6 to get 4.
\frac{1600\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)}{4}
Multiply 400 and 4 to get 1600.
400\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right)
Divide 1600\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right) by 4 to get 400\sqrt{2}\left(\sqrt{6}+\sqrt{2}\right).
400\sqrt{2}\sqrt{6}+400\left(\sqrt{2}\right)^{2}
Use the distributive property to multiply 400\sqrt{2} by \sqrt{6}+\sqrt{2}.
400\sqrt{2}\sqrt{2}\sqrt{3}+400\left(\sqrt{2}\right)^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
400\times 2\sqrt{3}+400\left(\sqrt{2}\right)^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
800\sqrt{3}+400\left(\sqrt{2}\right)^{2}
Multiply 400 and 2 to get 800.
800\sqrt{3}+400\times 2
The square of \sqrt{2} is 2.
800\sqrt{3}+800
Multiply 400 and 2 to get 800.