Solve for b
b = \frac{\sqrt{33} + 8}{13} \approx 1.05727405
b=\frac{8-\sqrt{33}}{13}\approx 0.173495181
Share
Copied to clipboard
13\times 80b=845b^{2}+1000-845
Multiply both sides of the equation by 169, the least common multiple of 13,169.
1040b=845b^{2}+1000-845
Multiply 13 and 80 to get 1040.
1040b=845b^{2}+155
Subtract 845 from 1000 to get 155.
1040b-845b^{2}=155
Subtract 845b^{2} from both sides.
1040b-845b^{2}-155=0
Subtract 155 from both sides.
-845b^{2}+1040b-155=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
b=\frac{-1040±\sqrt{1040^{2}-4\left(-845\right)\left(-155\right)}}{2\left(-845\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -845 for a, 1040 for b, and -155 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
b=\frac{-1040±\sqrt{1081600-4\left(-845\right)\left(-155\right)}}{2\left(-845\right)}
Square 1040.
b=\frac{-1040±\sqrt{1081600+3380\left(-155\right)}}{2\left(-845\right)}
Multiply -4 times -845.
b=\frac{-1040±\sqrt{1081600-523900}}{2\left(-845\right)}
Multiply 3380 times -155.
b=\frac{-1040±\sqrt{557700}}{2\left(-845\right)}
Add 1081600 to -523900.
b=\frac{-1040±130\sqrt{33}}{2\left(-845\right)}
Take the square root of 557700.
b=\frac{-1040±130\sqrt{33}}{-1690}
Multiply 2 times -845.
b=\frac{130\sqrt{33}-1040}{-1690}
Now solve the equation b=\frac{-1040±130\sqrt{33}}{-1690} when ± is plus. Add -1040 to 130\sqrt{33}.
b=\frac{8-\sqrt{33}}{13}
Divide -1040+130\sqrt{33} by -1690.
b=\frac{-130\sqrt{33}-1040}{-1690}
Now solve the equation b=\frac{-1040±130\sqrt{33}}{-1690} when ± is minus. Subtract 130\sqrt{33} from -1040.
b=\frac{\sqrt{33}+8}{13}
Divide -1040-130\sqrt{33} by -1690.
b=\frac{8-\sqrt{33}}{13} b=\frac{\sqrt{33}+8}{13}
The equation is now solved.
13\times 80b=845b^{2}+1000-845
Multiply both sides of the equation by 169, the least common multiple of 13,169.
1040b=845b^{2}+1000-845
Multiply 13 and 80 to get 1040.
1040b=845b^{2}+155
Subtract 845 from 1000 to get 155.
1040b-845b^{2}=155
Subtract 845b^{2} from both sides.
-845b^{2}+1040b=155
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-845b^{2}+1040b}{-845}=\frac{155}{-845}
Divide both sides by -845.
b^{2}+\frac{1040}{-845}b=\frac{155}{-845}
Dividing by -845 undoes the multiplication by -845.
b^{2}-\frac{16}{13}b=\frac{155}{-845}
Reduce the fraction \frac{1040}{-845} to lowest terms by extracting and canceling out 65.
b^{2}-\frac{16}{13}b=-\frac{31}{169}
Reduce the fraction \frac{155}{-845} to lowest terms by extracting and canceling out 5.
b^{2}-\frac{16}{13}b+\left(-\frac{8}{13}\right)^{2}=-\frac{31}{169}+\left(-\frac{8}{13}\right)^{2}
Divide -\frac{16}{13}, the coefficient of the x term, by 2 to get -\frac{8}{13}. Then add the square of -\frac{8}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
b^{2}-\frac{16}{13}b+\frac{64}{169}=\frac{-31+64}{169}
Square -\frac{8}{13} by squaring both the numerator and the denominator of the fraction.
b^{2}-\frac{16}{13}b+\frac{64}{169}=\frac{33}{169}
Add -\frac{31}{169} to \frac{64}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(b-\frac{8}{13}\right)^{2}=\frac{33}{169}
Factor b^{2}-\frac{16}{13}b+\frac{64}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(b-\frac{8}{13}\right)^{2}}=\sqrt{\frac{33}{169}}
Take the square root of both sides of the equation.
b-\frac{8}{13}=\frac{\sqrt{33}}{13} b-\frac{8}{13}=-\frac{\sqrt{33}}{13}
Simplify.
b=\frac{\sqrt{33}+8}{13} b=\frac{8-\sqrt{33}}{13}
Add \frac{8}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}