Solve for x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
x=6
Graph
Share
Copied to clipboard
80+3x\left(x+4\right)=26\left(x+4\right)
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
80+3x^{2}+12x=26\left(x+4\right)
Use the distributive property to multiply 3x by x+4.
80+3x^{2}+12x=26x+104
Use the distributive property to multiply 26 by x+4.
80+3x^{2}+12x-26x=104
Subtract 26x from both sides.
80+3x^{2}-14x=104
Combine 12x and -26x to get -14x.
80+3x^{2}-14x-104=0
Subtract 104 from both sides.
-24+3x^{2}-14x=0
Subtract 104 from 80 to get -24.
3x^{2}-14x-24=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-14\right)±\sqrt{\left(-14\right)^{2}-4\times 3\left(-24\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -14 for b, and -24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-14\right)±\sqrt{196-4\times 3\left(-24\right)}}{2\times 3}
Square -14.
x=\frac{-\left(-14\right)±\sqrt{196-12\left(-24\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-14\right)±\sqrt{196+288}}{2\times 3}
Multiply -12 times -24.
x=\frac{-\left(-14\right)±\sqrt{484}}{2\times 3}
Add 196 to 288.
x=\frac{-\left(-14\right)±22}{2\times 3}
Take the square root of 484.
x=\frac{14±22}{2\times 3}
The opposite of -14 is 14.
x=\frac{14±22}{6}
Multiply 2 times 3.
x=\frac{36}{6}
Now solve the equation x=\frac{14±22}{6} when ± is plus. Add 14 to 22.
x=6
Divide 36 by 6.
x=-\frac{8}{6}
Now solve the equation x=\frac{14±22}{6} when ± is minus. Subtract 22 from 14.
x=-\frac{4}{3}
Reduce the fraction \frac{-8}{6} to lowest terms by extracting and canceling out 2.
x=6 x=-\frac{4}{3}
The equation is now solved.
80+3x\left(x+4\right)=26\left(x+4\right)
Variable x cannot be equal to -4 since division by zero is not defined. Multiply both sides of the equation by x+4.
80+3x^{2}+12x=26\left(x+4\right)
Use the distributive property to multiply 3x by x+4.
80+3x^{2}+12x=26x+104
Use the distributive property to multiply 26 by x+4.
80+3x^{2}+12x-26x=104
Subtract 26x from both sides.
80+3x^{2}-14x=104
Combine 12x and -26x to get -14x.
3x^{2}-14x=104-80
Subtract 80 from both sides.
3x^{2}-14x=24
Subtract 80 from 104 to get 24.
\frac{3x^{2}-14x}{3}=\frac{24}{3}
Divide both sides by 3.
x^{2}-\frac{14}{3}x=\frac{24}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{14}{3}x=8
Divide 24 by 3.
x^{2}-\frac{14}{3}x+\left(-\frac{7}{3}\right)^{2}=8+\left(-\frac{7}{3}\right)^{2}
Divide -\frac{14}{3}, the coefficient of the x term, by 2 to get -\frac{7}{3}. Then add the square of -\frac{7}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{14}{3}x+\frac{49}{9}=8+\frac{49}{9}
Square -\frac{7}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{14}{3}x+\frac{49}{9}=\frac{121}{9}
Add 8 to \frac{49}{9}.
\left(x-\frac{7}{3}\right)^{2}=\frac{121}{9}
Factor x^{2}-\frac{14}{3}x+\frac{49}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{3}\right)^{2}}=\sqrt{\frac{121}{9}}
Take the square root of both sides of the equation.
x-\frac{7}{3}=\frac{11}{3} x-\frac{7}{3}=-\frac{11}{3}
Simplify.
x=6 x=-\frac{4}{3}
Add \frac{7}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}