Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{80\times 4}{\sqrt{6}-\sqrt{2}}=\frac{x}{\frac{1}{2}}
Divide 80 by \frac{\sqrt{6}-\sqrt{2}}{4} by multiplying 80 by the reciprocal of \frac{\sqrt{6}-\sqrt{2}}{4}.
\frac{320}{\sqrt{6}-\sqrt{2}}=\frac{x}{\frac{1}{2}}
Multiply 80 and 4 to get 320.
\frac{320\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right)}=\frac{x}{\frac{1}{2}}
Rationalize the denominator of \frac{320}{\sqrt{6}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{6}+\sqrt{2}.
\frac{320\left(\sqrt{6}+\sqrt{2}\right)}{\left(\sqrt{6}\right)^{2}-\left(\sqrt{2}\right)^{2}}=\frac{x}{\frac{1}{2}}
Consider \left(\sqrt{6}-\sqrt{2}\right)\left(\sqrt{6}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{320\left(\sqrt{6}+\sqrt{2}\right)}{6-2}=\frac{x}{\frac{1}{2}}
Square \sqrt{6}. Square \sqrt{2}.
\frac{320\left(\sqrt{6}+\sqrt{2}\right)}{4}=\frac{x}{\frac{1}{2}}
Subtract 2 from 6 to get 4.
80\left(\sqrt{6}+\sqrt{2}\right)=\frac{x}{\frac{1}{2}}
Divide 320\left(\sqrt{6}+\sqrt{2}\right) by 4 to get 80\left(\sqrt{6}+\sqrt{2}\right).
80\sqrt{6}+80\sqrt{2}=\frac{x}{\frac{1}{2}}
Use the distributive property to multiply 80 by \sqrt{6}+\sqrt{2}.
\frac{x}{\frac{1}{2}}=80\sqrt{6}+80\sqrt{2}
Swap sides so that all variable terms are on the left hand side.
2x=80\sqrt{2}+80\sqrt{6}
The equation is in standard form.
\frac{2x}{2}=\frac{80\sqrt{2}+80\sqrt{6}}{2}
Divide both sides by 2.
x=\frac{80\sqrt{2}+80\sqrt{6}}{2}
Dividing by 2 undoes the multiplication by 2.
x=40\sqrt{2}+40\sqrt{6}
Divide 80\sqrt{6}+80\sqrt{2} by 2.