\frac { 80 ! } { ( 80 - 71 ) ! 80 ! } ( 0,7 ) ^ { 71 } ( 1 - 0,3 ) ^ { 19 }
Evaluate
\frac{1635782513474434908477160959077878011007714974754996979744938053160034289607}{51840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}\approx 3,155444663 \cdot 10^{-20}
Factor
\frac{7 ^ {89}}{2 ^ {97} \cdot 3 ^ {4} \cdot 5 ^ {91}} = 3.1554446633380304 \times 10^{-20}
Quiz
5 problems similar to:
\frac { 80 ! } { ( 80 - 71 ) ! 80 ! } ( 0,7 ) ^ { 71 } ( 1 - 0,3 ) ^ { 19 }
Share
Copied to clipboard
\frac{71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000}{\left(80-71\right)!\times 80!}\times 0,7^{71}\left(1-0,3\right)^{19}
The factorial of 80 is 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000.
\frac{71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000}{9!\times 80!}\times 0,7^{71}\left(1-0,3\right)^{19}
Subtract 71 from 80 to get 9.
\frac{71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000}{362880\times 80!}\times 0,7^{71}\left(1-0,3\right)^{19}
The factorial of 9 is 362880.
\frac{71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000}{362880\times 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000}\times 0,7^{71}\left(1-0,3\right)^{19}
The factorial of 80 is 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000.
\frac{71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000}{25971124572948208576741209357469928792247360456397684295181475422729428005028636412027706713438861813350400000000000000000000}\times 0,7^{71}\left(1-0,3\right)^{19}
Multiply 362880 and 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000 to get 25971124572948208576741209357469928792247360456397684295181475422729428005028636412027706713438861813350400000000000000000000.
\frac{1}{362880}\times 0,7^{71}\left(1-0,3\right)^{19}
Reduce the fraction \frac{71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000}{25971124572948208576741209357469928792247360456397684295181475422729428005028636412027706713438861813350400000000000000000000} to lowest terms by extracting and canceling out 71569457046263802294811533723186532165584657342365752577109445058227039255480148842668944867280814080000000000000000000.
\frac{1}{362880}\times 0,00000000001004525211269079039999221534496697502180541686174722466474743\left(1-0,3\right)^{19}
Calculate 0,7 to the power of 71 and get 0,00000000001004525211269079039999221534496697502180541686174722466474743.
\frac{143503601609868434285603076356671071740077383739246066639249}{5184000000000000000000000000000000000000000000000000000000000000000000000000}\left(1-0,3\right)^{19}
Multiply \frac{1}{362880} and 0,00000000001004525211269079039999221534496697502180541686174722466474743 to get \frac{143503601609868434285603076356671071740077383739246066639249}{5184000000000000000000000000000000000000000000000000000000000000000000000000}.
\frac{143503601609868434285603076356671071740077383739246066639249}{5184000000000000000000000000000000000000000000000000000000000000000000000000}\times 0,7^{19}
Subtract 0,3 from 1 to get 0,7.
\frac{143503601609868434285603076356671071740077383739246066639249}{5184000000000000000000000000000000000000000000000000000000000000000000000000}\times 0,0011398895185373143
Calculate 0,7 to the power of 19 and get 0,0011398895185373143.
\frac{1635782513474434908477160959077878011007714974754996979744938053160034289607}{51840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}
Multiply \frac{143503601609868434285603076356671071740077383739246066639249}{5184000000000000000000000000000000000000000000000000000000000000000000000000} and 0,0011398895185373143 to get \frac{1635782513474434908477160959077878011007714974754996979744938053160034289607}{51840000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}