Solve for P
P = \frac{27 {(\sqrt{105} - \sqrt{3})}}{100} \approx 2.299022989
Share
Copied to clipboard
\frac{81}{50}\times \frac{2\sqrt{7}+3\sqrt{5}}{\sqrt{7}+\sqrt{5}}=P\sqrt{3}
Expand \frac{8.1}{5} by multiplying both numerator and the denominator by 10.
\frac{81}{50}\times \frac{\left(2\sqrt{7}+3\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}=P\sqrt{3}
Rationalize the denominator of \frac{2\sqrt{7}+3\sqrt{5}}{\sqrt{7}+\sqrt{5}} by multiplying numerator and denominator by \sqrt{7}-\sqrt{5}.
\frac{81}{50}\times \frac{\left(2\sqrt{7}+3\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}\right)^{2}-\left(\sqrt{5}\right)^{2}}=P\sqrt{3}
Consider \left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{81}{50}\times \frac{\left(2\sqrt{7}+3\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{7-5}=P\sqrt{3}
Square \sqrt{7}. Square \sqrt{5}.
\frac{81}{50}\times \frac{\left(2\sqrt{7}+3\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{2}=P\sqrt{3}
Subtract 5 from 7 to get 2.
\frac{81\left(2\sqrt{7}+3\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{50\times 2}=P\sqrt{3}
Multiply \frac{81}{50} times \frac{\left(2\sqrt{7}+3\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{81\left(2\sqrt{7}+3\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{100}=P\sqrt{3}
Multiply 50 and 2 to get 100.
P\sqrt{3}=\frac{81\left(2\sqrt{7}+3\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{100}
Swap sides so that all variable terms are on the left hand side.
P\sqrt{3}=\frac{\left(162\sqrt{7}+243\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}{100}
Use the distributive property to multiply 81 by 2\sqrt{7}+3\sqrt{5}.
P\sqrt{3}=\frac{162\left(\sqrt{7}\right)^{2}-162\sqrt{7}\sqrt{5}+243\sqrt{5}\sqrt{7}-243\left(\sqrt{5}\right)^{2}}{100}
Apply the distributive property by multiplying each term of 162\sqrt{7}+243\sqrt{5} by each term of \sqrt{7}-\sqrt{5}.
P\sqrt{3}=\frac{162\times 7-162\sqrt{7}\sqrt{5}+243\sqrt{5}\sqrt{7}-243\left(\sqrt{5}\right)^{2}}{100}
The square of \sqrt{7} is 7.
P\sqrt{3}=\frac{1134-162\sqrt{7}\sqrt{5}+243\sqrt{5}\sqrt{7}-243\left(\sqrt{5}\right)^{2}}{100}
Multiply 162 and 7 to get 1134.
P\sqrt{3}=\frac{1134-162\sqrt{35}+243\sqrt{5}\sqrt{7}-243\left(\sqrt{5}\right)^{2}}{100}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
P\sqrt{3}=\frac{1134-162\sqrt{35}+243\sqrt{35}-243\left(\sqrt{5}\right)^{2}}{100}
To multiply \sqrt{5} and \sqrt{7}, multiply the numbers under the square root.
P\sqrt{3}=\frac{1134+81\sqrt{35}-243\left(\sqrt{5}\right)^{2}}{100}
Combine -162\sqrt{35} and 243\sqrt{35} to get 81\sqrt{35}.
P\sqrt{3}=\frac{1134+81\sqrt{35}-243\times 5}{100}
The square of \sqrt{5} is 5.
P\sqrt{3}=\frac{1134+81\sqrt{35}-1215}{100}
Multiply -243 and 5 to get -1215.
P\sqrt{3}=\frac{-81+81\sqrt{35}}{100}
Subtract 1215 from 1134 to get -81.
P\sqrt{3}=-\frac{81}{100}+\frac{81}{100}\sqrt{35}
Divide each term of -81+81\sqrt{35} by 100 to get -\frac{81}{100}+\frac{81}{100}\sqrt{35}.
\sqrt{3}P=\frac{81\sqrt{35}-81}{100}
The equation is in standard form.
\frac{\sqrt{3}P}{\sqrt{3}}=\frac{81\sqrt{35}-81}{100\sqrt{3}}
Divide both sides by \sqrt{3}.
P=\frac{81\sqrt{35}-81}{100\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
P=\frac{27\sqrt{3}\left(\sqrt{35}-1\right)}{100}
Divide \frac{-81+81\sqrt{35}}{100} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}