Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{8z+2}{3\left(z-3\right)\left(z+2\right)}+\frac{9}{3\left(z-3\right)\left(z-1\right)}
Factor 3z^{2}-3z-18. Factor 3z^{2}-12z+9.
\frac{\left(8z+2\right)\left(z-1\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}+\frac{9\left(z+2\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(z-3\right)\left(z+2\right) and 3\left(z-3\right)\left(z-1\right) is 3\left(z-3\right)\left(z-1\right)\left(z+2\right). Multiply \frac{8z+2}{3\left(z-3\right)\left(z+2\right)} times \frac{z-1}{z-1}. Multiply \frac{9}{3\left(z-3\right)\left(z-1\right)} times \frac{z+2}{z+2}.
\frac{\left(8z+2\right)\left(z-1\right)+9\left(z+2\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}
Since \frac{\left(8z+2\right)\left(z-1\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)} and \frac{9\left(z+2\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)} have the same denominator, add them by adding their numerators.
\frac{8z^{2}-8z+2z-2+9z+18}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}
Do the multiplications in \left(8z+2\right)\left(z-1\right)+9\left(z+2\right).
\frac{8z^{2}+3z+16}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}
Combine like terms in 8z^{2}-8z+2z-2+9z+18.
\frac{8z^{2}+3z+16}{3z^{3}-6z^{2}-15z+18}
Expand 3\left(z-3\right)\left(z-1\right)\left(z+2\right).
\frac{8z+2}{3\left(z-3\right)\left(z+2\right)}+\frac{9}{3\left(z-3\right)\left(z-1\right)}
Factor 3z^{2}-3z-18. Factor 3z^{2}-12z+9.
\frac{\left(8z+2\right)\left(z-1\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}+\frac{9\left(z+2\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(z-3\right)\left(z+2\right) and 3\left(z-3\right)\left(z-1\right) is 3\left(z-3\right)\left(z-1\right)\left(z+2\right). Multiply \frac{8z+2}{3\left(z-3\right)\left(z+2\right)} times \frac{z-1}{z-1}. Multiply \frac{9}{3\left(z-3\right)\left(z-1\right)} times \frac{z+2}{z+2}.
\frac{\left(8z+2\right)\left(z-1\right)+9\left(z+2\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}
Since \frac{\left(8z+2\right)\left(z-1\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)} and \frac{9\left(z+2\right)}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)} have the same denominator, add them by adding their numerators.
\frac{8z^{2}-8z+2z-2+9z+18}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}
Do the multiplications in \left(8z+2\right)\left(z-1\right)+9\left(z+2\right).
\frac{8z^{2}+3z+16}{3\left(z-3\right)\left(z-1\right)\left(z+2\right)}
Combine like terms in 8z^{2}-8z+2z-2+9z+18.
\frac{8z^{2}+3z+16}{3z^{3}-6z^{2}-15z+18}
Expand 3\left(z-3\right)\left(z-1\right)\left(z+2\right).