Solve for v
v=\frac{44-8y}{3}
y\neq 4
Solve for y
y=-\frac{3v}{8}+\frac{11}{2}
v\neq 4
Graph
Share
Copied to clipboard
8y=32+\left(v-4\right)\left(-3\right)
Variable v cannot be equal to 4 since division by zero is not defined. Multiply both sides of the equation by v-4.
8y=32-3v+12
Use the distributive property to multiply v-4 by -3.
8y=44-3v
Add 32 and 12 to get 44.
44-3v=8y
Swap sides so that all variable terms are on the left hand side.
-3v=8y-44
Subtract 44 from both sides.
\frac{-3v}{-3}=\frac{8y-44}{-3}
Divide both sides by -3.
v=\frac{8y-44}{-3}
Dividing by -3 undoes the multiplication by -3.
v=\frac{44-8y}{3}
Divide 8y-44 by -3.
v=\frac{44-8y}{3}\text{, }v\neq 4
Variable v cannot be equal to 4.
8y=32+\left(v-4\right)\left(-3\right)
Multiply both sides of the equation by v-4.
8y=32-3v+12
Use the distributive property to multiply v-4 by -3.
8y=44-3v
Add 32 and 12 to get 44.
\frac{8y}{8}=\frac{44-3v}{8}
Divide both sides by 8.
y=\frac{44-3v}{8}
Dividing by 8 undoes the multiplication by 8.
y=-\frac{3v}{8}+\frac{11}{2}
Divide 44-3v by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}