Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(8y^{10}\right)^{1}\times \frac{1}{3y^{6}}
Use the rules of exponents to simplify the expression.
8^{1}\left(y^{10}\right)^{1}\times \frac{1}{3}\times \frac{1}{y^{6}}
To raise the product of two or more numbers to a power, raise each number to the power and take their product.
8^{1}\times \frac{1}{3}\left(y^{10}\right)^{1}\times \frac{1}{y^{6}}
Use the Commutative Property of Multiplication.
8^{1}\times \frac{1}{3}y^{10}y^{6\left(-1\right)}
To raise a power to another power, multiply the exponents.
8^{1}\times \frac{1}{3}y^{10}y^{-6}
Multiply 6 times -1.
8^{1}\times \frac{1}{3}y^{10-6}
To multiply powers of the same base, add their exponents.
8^{1}\times \frac{1}{3}y^{4}
Add the exponents 10 and -6.
8\times \frac{1}{3}y^{4}
Raise 8 to the power 1.
\frac{8}{3}y^{4}
Multiply 8 times \frac{1}{3}.
\frac{8^{1}y^{10}}{3^{1}y^{6}}
Use the rules of exponents to simplify the expression.
\frac{8^{1}y^{10-6}}{3^{1}}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{8^{1}y^{4}}{3^{1}}
Subtract 6 from 10.
\frac{8}{3}y^{4}
Divide 8 by 3.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{8}{3}y^{10-6})
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent.
\frac{\mathrm{d}}{\mathrm{d}y}(\frac{8}{3}y^{4})
Do the arithmetic.
4\times \frac{8}{3}y^{4-1}
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\frac{32}{3}y^{3}
Do the arithmetic.