Evaluate
-\frac{\left(5y-1\right)\left(y+4\right)}{3y\left(y-4\right)}
Expand
\frac{5y^{2}+19y-4}{3y\left(4-y\right)}
Graph
Share
Copied to clipboard
\frac{\left(8y+y^{2}+16\right)\left(25y^{2}-1\right)}{\left(15y^{2}+3y\right)\left(16-y^{2}\right)}
Divide \frac{8y+y^{2}+16}{15y^{2}+3y} by \frac{16-y^{2}}{25y^{2}-1} by multiplying \frac{8y+y^{2}+16}{15y^{2}+3y} by the reciprocal of \frac{16-y^{2}}{25y^{2}-1}.
\frac{\left(5y-1\right)\left(5y+1\right)\left(y+4\right)^{2}}{3y\left(y-4\right)\left(-y-4\right)\left(5y+1\right)}
Factor the expressions that are not already factored.
\frac{\left(5y-1\right)\left(y+4\right)^{2}}{3y\left(y-4\right)\left(-y-4\right)}
Cancel out 5y+1 in both numerator and denominator.
\frac{5y^{3}+39y^{2}+72y-16}{-3y^{3}+48y}
Expand the expression.
\frac{\left(8y+y^{2}+16\right)\left(25y^{2}-1\right)}{\left(15y^{2}+3y\right)\left(16-y^{2}\right)}
Divide \frac{8y+y^{2}+16}{15y^{2}+3y} by \frac{16-y^{2}}{25y^{2}-1} by multiplying \frac{8y+y^{2}+16}{15y^{2}+3y} by the reciprocal of \frac{16-y^{2}}{25y^{2}-1}.
\frac{\left(5y-1\right)\left(5y+1\right)\left(y+4\right)^{2}}{3y\left(y-4\right)\left(-y-4\right)\left(5y+1\right)}
Factor the expressions that are not already factored.
\frac{\left(5y-1\right)\left(y+4\right)^{2}}{3y\left(y-4\right)\left(-y-4\right)}
Cancel out 5y+1 in both numerator and denominator.
\frac{5y^{3}+39y^{2}+72y-16}{-3y^{3}+48y}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}