Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\left(8y+y^{2}+16\right)\left(25y^{2}-1\right)}{\left(15y^{2}+3y\right)\left(16-y^{2}\right)}
Divide \frac{8y+y^{2}+16}{15y^{2}+3y} by \frac{16-y^{2}}{25y^{2}-1} by multiplying \frac{8y+y^{2}+16}{15y^{2}+3y} by the reciprocal of \frac{16-y^{2}}{25y^{2}-1}.
\frac{\left(5y-1\right)\left(5y+1\right)\left(y+4\right)^{2}}{3y\left(y-4\right)\left(-y-4\right)\left(5y+1\right)}
Factor the expressions that are not already factored.
\frac{\left(5y-1\right)\left(y+4\right)^{2}}{3y\left(y-4\right)\left(-y-4\right)}
Cancel out 5y+1 in both numerator and denominator.
\frac{5y^{3}+39y^{2}+72y-16}{-3y^{3}+48y}
Expand the expression.
\frac{\left(8y+y^{2}+16\right)\left(25y^{2}-1\right)}{\left(15y^{2}+3y\right)\left(16-y^{2}\right)}
Divide \frac{8y+y^{2}+16}{15y^{2}+3y} by \frac{16-y^{2}}{25y^{2}-1} by multiplying \frac{8y+y^{2}+16}{15y^{2}+3y} by the reciprocal of \frac{16-y^{2}}{25y^{2}-1}.
\frac{\left(5y-1\right)\left(5y+1\right)\left(y+4\right)^{2}}{3y\left(y-4\right)\left(-y-4\right)\left(5y+1\right)}
Factor the expressions that are not already factored.
\frac{\left(5y-1\right)\left(y+4\right)^{2}}{3y\left(y-4\right)\left(-y-4\right)}
Cancel out 5y+1 in both numerator and denominator.
\frac{5y^{3}+39y^{2}+72y-16}{-3y^{3}+48y}
Expand the expression.