Solve for x
x=\frac{2\sqrt{19}-11}{9}\approx -0.253578013
x=\frac{-2\sqrt{19}-11}{9}\approx -2.190866432
Graph
Share
Copied to clipboard
\left(x+2\right)\times 8x=\left(x+5\right)\times 4-\left(x+5\right)^{2}
Variable x cannot be equal to any of the values -5,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+5\right)^{2}, the least common multiple of x^{2}+10x+25,x^{2}+7x+10,x+2.
\left(8x+16\right)x=\left(x+5\right)\times 4-\left(x+5\right)^{2}
Use the distributive property to multiply x+2 by 8.
8x^{2}+16x=\left(x+5\right)\times 4-\left(x+5\right)^{2}
Use the distributive property to multiply 8x+16 by x.
8x^{2}+16x=4x+20-\left(x+5\right)^{2}
Use the distributive property to multiply x+5 by 4.
8x^{2}+16x=4x+20-\left(x^{2}+10x+25\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
8x^{2}+16x=4x+20-x^{2}-10x-25
To find the opposite of x^{2}+10x+25, find the opposite of each term.
8x^{2}+16x=-6x+20-x^{2}-25
Combine 4x and -10x to get -6x.
8x^{2}+16x=-6x-5-x^{2}
Subtract 25 from 20 to get -5.
8x^{2}+16x+6x=-5-x^{2}
Add 6x to both sides.
8x^{2}+22x=-5-x^{2}
Combine 16x and 6x to get 22x.
8x^{2}+22x-\left(-5\right)=-x^{2}
Subtract -5 from both sides.
8x^{2}+22x+5=-x^{2}
The opposite of -5 is 5.
8x^{2}+22x+5+x^{2}=0
Add x^{2} to both sides.
9x^{2}+22x+5=0
Combine 8x^{2} and x^{2} to get 9x^{2}.
x=\frac{-22±\sqrt{22^{2}-4\times 9\times 5}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, 22 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-22±\sqrt{484-4\times 9\times 5}}{2\times 9}
Square 22.
x=\frac{-22±\sqrt{484-36\times 5}}{2\times 9}
Multiply -4 times 9.
x=\frac{-22±\sqrt{484-180}}{2\times 9}
Multiply -36 times 5.
x=\frac{-22±\sqrt{304}}{2\times 9}
Add 484 to -180.
x=\frac{-22±4\sqrt{19}}{2\times 9}
Take the square root of 304.
x=\frac{-22±4\sqrt{19}}{18}
Multiply 2 times 9.
x=\frac{4\sqrt{19}-22}{18}
Now solve the equation x=\frac{-22±4\sqrt{19}}{18} when ± is plus. Add -22 to 4\sqrt{19}.
x=\frac{2\sqrt{19}-11}{9}
Divide -22+4\sqrt{19} by 18.
x=\frac{-4\sqrt{19}-22}{18}
Now solve the equation x=\frac{-22±4\sqrt{19}}{18} when ± is minus. Subtract 4\sqrt{19} from -22.
x=\frac{-2\sqrt{19}-11}{9}
Divide -22-4\sqrt{19} by 18.
x=\frac{2\sqrt{19}-11}{9} x=\frac{-2\sqrt{19}-11}{9}
The equation is now solved.
\left(x+2\right)\times 8x=\left(x+5\right)\times 4-\left(x+5\right)^{2}
Variable x cannot be equal to any of the values -5,-2 since division by zero is not defined. Multiply both sides of the equation by \left(x+2\right)\left(x+5\right)^{2}, the least common multiple of x^{2}+10x+25,x^{2}+7x+10,x+2.
\left(8x+16\right)x=\left(x+5\right)\times 4-\left(x+5\right)^{2}
Use the distributive property to multiply x+2 by 8.
8x^{2}+16x=\left(x+5\right)\times 4-\left(x+5\right)^{2}
Use the distributive property to multiply 8x+16 by x.
8x^{2}+16x=4x+20-\left(x+5\right)^{2}
Use the distributive property to multiply x+5 by 4.
8x^{2}+16x=4x+20-\left(x^{2}+10x+25\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
8x^{2}+16x=4x+20-x^{2}-10x-25
To find the opposite of x^{2}+10x+25, find the opposite of each term.
8x^{2}+16x=-6x+20-x^{2}-25
Combine 4x and -10x to get -6x.
8x^{2}+16x=-6x-5-x^{2}
Subtract 25 from 20 to get -5.
8x^{2}+16x+6x=-5-x^{2}
Add 6x to both sides.
8x^{2}+22x=-5-x^{2}
Combine 16x and 6x to get 22x.
8x^{2}+22x+x^{2}=-5
Add x^{2} to both sides.
9x^{2}+22x=-5
Combine 8x^{2} and x^{2} to get 9x^{2}.
\frac{9x^{2}+22x}{9}=-\frac{5}{9}
Divide both sides by 9.
x^{2}+\frac{22}{9}x=-\frac{5}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}+\frac{22}{9}x+\left(\frac{11}{9}\right)^{2}=-\frac{5}{9}+\left(\frac{11}{9}\right)^{2}
Divide \frac{22}{9}, the coefficient of the x term, by 2 to get \frac{11}{9}. Then add the square of \frac{11}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{22}{9}x+\frac{121}{81}=-\frac{5}{9}+\frac{121}{81}
Square \frac{11}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{22}{9}x+\frac{121}{81}=\frac{76}{81}
Add -\frac{5}{9} to \frac{121}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{11}{9}\right)^{2}=\frac{76}{81}
Factor x^{2}+\frac{22}{9}x+\frac{121}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{11}{9}\right)^{2}}=\sqrt{\frac{76}{81}}
Take the square root of both sides of the equation.
x+\frac{11}{9}=\frac{2\sqrt{19}}{9} x+\frac{11}{9}=-\frac{2\sqrt{19}}{9}
Simplify.
x=\frac{2\sqrt{19}-11}{9} x=\frac{-2\sqrt{19}-11}{9}
Subtract \frac{11}{9} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}