Evaluate
\frac{28x}{3}
Differentiate w.r.t. x
\frac{28}{3} = 9\frac{1}{3} = 9.333333333333334
Graph
Share
Copied to clipboard
\frac{8x}{5!\times 3!}\times 5!\times 7
Subtract 3 from 8 to get 5.
\frac{8x}{120\times 3!}\times 5!\times 7
The factorial of 5 is 120.
\frac{8x}{120\times 6}\times 5!\times 7
The factorial of 3 is 6.
\frac{8x}{720}\times 5!\times 7
Multiply 120 and 6 to get 720.
\frac{1}{90}x\times 5!\times 7
Divide 8x by 720 to get \frac{1}{90}x.
\frac{1}{90}x\times 120\times 7
The factorial of 5 is 120.
\frac{120}{90}x\times 7
Multiply \frac{1}{90} and 120 to get \frac{120}{90}.
\frac{4}{3}x\times 7
Reduce the fraction \frac{120}{90} to lowest terms by extracting and canceling out 30.
\frac{4\times 7}{3}x
Express \frac{4}{3}\times 7 as a single fraction.
\frac{28}{3}x
Multiply 4 and 7 to get 28.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8x}{5!\times 3!}\times 5!\times 7)
Subtract 3 from 8 to get 5.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8x}{120\times 3!}\times 5!\times 7)
The factorial of 5 is 120.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8x}{120\times 6}\times 5!\times 7)
The factorial of 3 is 6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8x}{720}\times 5!\times 7)
Multiply 120 and 6 to get 720.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{90}x\times 5!\times 7)
Divide 8x by 720 to get \frac{1}{90}x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{90}x\times 120\times 7)
The factorial of 5 is 120.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{120}{90}x\times 7)
Multiply \frac{1}{90} and 120 to get \frac{120}{90}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{3}x\times 7)
Reduce the fraction \frac{120}{90} to lowest terms by extracting and canceling out 30.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\times 7}{3}x)
Express \frac{4}{3}\times 7 as a single fraction.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{28}{3}x)
Multiply 4 and 7 to get 28.
\frac{28}{3}x^{1-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{28}{3}x^{0}
Subtract 1 from 1.
\frac{28}{3}\times 1
For any term t except 0, t^{0}=1.
\frac{28}{3}
For any term t, t\times 1=t and 1t=t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}