Evaluate
\frac{2x-3y}{4y^{2}}
Expand
-\frac{3y-2x}{4y^{2}}
Share
Copied to clipboard
\frac{\left(8x^{3}+12x^{2}y\right)\left(4x^{2}-12xy+9y^{2}\right)}{\left(4x^{2}-9y^{2}\right)\times 16x^{2}y^{2}}
Divide \frac{8x^{3}+12x^{2}y}{4x^{2}-9y^{2}} by \frac{16x^{2}y^{2}}{4x^{2}-12xy+9y^{2}} by multiplying \frac{8x^{3}+12x^{2}y}{4x^{2}-9y^{2}} by the reciprocal of \frac{16x^{2}y^{2}}{4x^{2}-12xy+9y^{2}}.
\frac{4\left(2x+3y\right)x^{2}\left(2x-3y\right)^{2}}{16\left(2x-3y\right)\left(2x+3y\right)x^{2}y^{2}}
Factor the expressions that are not already factored.
\frac{2x-3y}{4y^{2}}
Cancel out 4\left(2x-3y\right)\left(2x+3y\right)x^{2} in both numerator and denominator.
\frac{\left(8x^{3}+12x^{2}y\right)\left(4x^{2}-12xy+9y^{2}\right)}{\left(4x^{2}-9y^{2}\right)\times 16x^{2}y^{2}}
Divide \frac{8x^{3}+12x^{2}y}{4x^{2}-9y^{2}} by \frac{16x^{2}y^{2}}{4x^{2}-12xy+9y^{2}} by multiplying \frac{8x^{3}+12x^{2}y}{4x^{2}-9y^{2}} by the reciprocal of \frac{16x^{2}y^{2}}{4x^{2}-12xy+9y^{2}}.
\frac{4\left(2x+3y\right)x^{2}\left(2x-3y\right)^{2}}{16\left(2x-3y\right)\left(2x+3y\right)x^{2}y^{2}}
Factor the expressions that are not already factored.
\frac{2x-3y}{4y^{2}}
Cancel out 4\left(2x-3y\right)\left(2x+3y\right)x^{2} in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}