Solve for x
x = \frac{\sqrt{15305} + 163}{176} \approx 1.629053286
x=\frac{163-\sqrt{15305}}{176}\approx 0.223219441
Graph
Share
Copied to clipboard
\left(4x-7\right)\left(8x+7\right)=\left(7x-9\right)\left(9-8x\right)
Variable x cannot be equal to any of the values \frac{9}{7},\frac{7}{4} since division by zero is not defined. Multiply both sides of the equation by \left(4x-7\right)\left(7x-9\right), the least common multiple of 7x-9,4x-7.
32x^{2}-28x-49=\left(7x-9\right)\left(9-8x\right)
Use the distributive property to multiply 4x-7 by 8x+7 and combine like terms.
32x^{2}-28x-49=135x-56x^{2}-81
Use the distributive property to multiply 7x-9 by 9-8x and combine like terms.
32x^{2}-28x-49-135x=-56x^{2}-81
Subtract 135x from both sides.
32x^{2}-163x-49=-56x^{2}-81
Combine -28x and -135x to get -163x.
32x^{2}-163x-49+56x^{2}=-81
Add 56x^{2} to both sides.
88x^{2}-163x-49=-81
Combine 32x^{2} and 56x^{2} to get 88x^{2}.
88x^{2}-163x-49+81=0
Add 81 to both sides.
88x^{2}-163x+32=0
Add -49 and 81 to get 32.
x=\frac{-\left(-163\right)±\sqrt{\left(-163\right)^{2}-4\times 88\times 32}}{2\times 88}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 88 for a, -163 for b, and 32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-163\right)±\sqrt{26569-4\times 88\times 32}}{2\times 88}
Square -163.
x=\frac{-\left(-163\right)±\sqrt{26569-352\times 32}}{2\times 88}
Multiply -4 times 88.
x=\frac{-\left(-163\right)±\sqrt{26569-11264}}{2\times 88}
Multiply -352 times 32.
x=\frac{-\left(-163\right)±\sqrt{15305}}{2\times 88}
Add 26569 to -11264.
x=\frac{163±\sqrt{15305}}{2\times 88}
The opposite of -163 is 163.
x=\frac{163±\sqrt{15305}}{176}
Multiply 2 times 88.
x=\frac{\sqrt{15305}+163}{176}
Now solve the equation x=\frac{163±\sqrt{15305}}{176} when ± is plus. Add 163 to \sqrt{15305}.
x=\frac{163-\sqrt{15305}}{176}
Now solve the equation x=\frac{163±\sqrt{15305}}{176} when ± is minus. Subtract \sqrt{15305} from 163.
x=\frac{\sqrt{15305}+163}{176} x=\frac{163-\sqrt{15305}}{176}
The equation is now solved.
\left(4x-7\right)\left(8x+7\right)=\left(7x-9\right)\left(9-8x\right)
Variable x cannot be equal to any of the values \frac{9}{7},\frac{7}{4} since division by zero is not defined. Multiply both sides of the equation by \left(4x-7\right)\left(7x-9\right), the least common multiple of 7x-9,4x-7.
32x^{2}-28x-49=\left(7x-9\right)\left(9-8x\right)
Use the distributive property to multiply 4x-7 by 8x+7 and combine like terms.
32x^{2}-28x-49=135x-56x^{2}-81
Use the distributive property to multiply 7x-9 by 9-8x and combine like terms.
32x^{2}-28x-49-135x=-56x^{2}-81
Subtract 135x from both sides.
32x^{2}-163x-49=-56x^{2}-81
Combine -28x and -135x to get -163x.
32x^{2}-163x-49+56x^{2}=-81
Add 56x^{2} to both sides.
88x^{2}-163x-49=-81
Combine 32x^{2} and 56x^{2} to get 88x^{2}.
88x^{2}-163x=-81+49
Add 49 to both sides.
88x^{2}-163x=-32
Add -81 and 49 to get -32.
\frac{88x^{2}-163x}{88}=-\frac{32}{88}
Divide both sides by 88.
x^{2}-\frac{163}{88}x=-\frac{32}{88}
Dividing by 88 undoes the multiplication by 88.
x^{2}-\frac{163}{88}x=-\frac{4}{11}
Reduce the fraction \frac{-32}{88} to lowest terms by extracting and canceling out 8.
x^{2}-\frac{163}{88}x+\left(-\frac{163}{176}\right)^{2}=-\frac{4}{11}+\left(-\frac{163}{176}\right)^{2}
Divide -\frac{163}{88}, the coefficient of the x term, by 2 to get -\frac{163}{176}. Then add the square of -\frac{163}{176} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{163}{88}x+\frac{26569}{30976}=-\frac{4}{11}+\frac{26569}{30976}
Square -\frac{163}{176} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{163}{88}x+\frac{26569}{30976}=\frac{15305}{30976}
Add -\frac{4}{11} to \frac{26569}{30976} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{163}{176}\right)^{2}=\frac{15305}{30976}
Factor x^{2}-\frac{163}{88}x+\frac{26569}{30976}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{163}{176}\right)^{2}}=\sqrt{\frac{15305}{30976}}
Take the square root of both sides of the equation.
x-\frac{163}{176}=\frac{\sqrt{15305}}{176} x-\frac{163}{176}=-\frac{\sqrt{15305}}{176}
Simplify.
x=\frac{\sqrt{15305}+163}{176} x=\frac{163-\sqrt{15305}}{176}
Add \frac{163}{176} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}