Solve for x
x = -\frac{63}{26} = -2\frac{11}{26} \approx -2.423076923
Graph
Share
Copied to clipboard
7\left(8x+4\right)=5\left(6x-7\right)
Variable x cannot be equal to \frac{4}{3} since division by zero is not defined. Multiply both sides of the equation by 35\left(3x-4\right), the least common multiple of 15x-20,21x-28.
56x+28=5\left(6x-7\right)
Use the distributive property to multiply 7 by 8x+4.
56x+28=30x-35
Use the distributive property to multiply 5 by 6x-7.
56x+28-30x=-35
Subtract 30x from both sides.
26x+28=-35
Combine 56x and -30x to get 26x.
26x=-35-28
Subtract 28 from both sides.
26x=-63
Subtract 28 from -35 to get -63.
x=\frac{-63}{26}
Divide both sides by 26.
x=-\frac{63}{26}
Fraction \frac{-63}{26} can be rewritten as -\frac{63}{26} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}