Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8t^{3}+27\right)\left(2t^{2}-t-3\right)}{\left(9-4t^{2}\right)\left(4t^{2}-6t+9\right)}
Divide \frac{8t^{3}+27}{9-4t^{2}} by \frac{4t^{2}-6t+9}{2t^{2}-t-3} by multiplying \frac{8t^{3}+27}{9-4t^{2}} by the reciprocal of \frac{4t^{2}-6t+9}{2t^{2}-t-3}.
\frac{\left(2t-3\right)\left(t+1\right)\left(2t+3\right)\left(4t^{2}-6t+9\right)}{\left(-2t-3\right)\left(2t-3\right)\left(4t^{2}-6t+9\right)}
Factor the expressions that are not already factored.
\frac{-\left(-2t-3\right)\left(2t-3\right)\left(t+1\right)\left(4t^{2}-6t+9\right)}{\left(-2t-3\right)\left(2t-3\right)\left(4t^{2}-6t+9\right)}
Extract the negative sign in 3+2t.
-\left(t+1\right)
Cancel out \left(-2t-3\right)\left(2t-3\right)\left(4t^{2}-6t+9\right) in both numerator and denominator.
-t-1
Expand the expression.
\frac{\left(8t^{3}+27\right)\left(2t^{2}-t-3\right)}{\left(9-4t^{2}\right)\left(4t^{2}-6t+9\right)}
Divide \frac{8t^{3}+27}{9-4t^{2}} by \frac{4t^{2}-6t+9}{2t^{2}-t-3} by multiplying \frac{8t^{3}+27}{9-4t^{2}} by the reciprocal of \frac{4t^{2}-6t+9}{2t^{2}-t-3}.
\frac{\left(2t-3\right)\left(t+1\right)\left(2t+3\right)\left(4t^{2}-6t+9\right)}{\left(-2t-3\right)\left(2t-3\right)\left(4t^{2}-6t+9\right)}
Factor the expressions that are not already factored.
\frac{-\left(-2t-3\right)\left(2t-3\right)\left(t+1\right)\left(4t^{2}-6t+9\right)}{\left(-2t-3\right)\left(2t-3\right)\left(4t^{2}-6t+9\right)}
Extract the negative sign in 3+2t.
-\left(t+1\right)
Cancel out \left(-2t-3\right)\left(2t-3\right)\left(4t^{2}-6t+9\right) in both numerator and denominator.
-t-1
Expand the expression.