Solve for p_2
\left\{\begin{matrix}p_{2}=\frac{8p_{3}}{3x}\text{, }&p_{3}\neq 0\text{ and }x\neq 0\\p_{2}\neq 0\text{, }&x=0\text{ and }p_{3}=0\end{matrix}\right.
Solve for p_3
p_{3}=\frac{3p_{2}x}{8}
p_{2}\neq 0
Graph
Share
Copied to clipboard
8p_{3}=x\times 3p_{2}
Variable p_{2} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3p_{2}.
x\times 3p_{2}=8p_{3}
Swap sides so that all variable terms are on the left hand side.
3xp_{2}=8p_{3}
The equation is in standard form.
\frac{3xp_{2}}{3x}=\frac{8p_{3}}{3x}
Divide both sides by 3x.
p_{2}=\frac{8p_{3}}{3x}
Dividing by 3x undoes the multiplication by 3x.
p_{2}=\frac{8p_{3}}{3x}\text{, }p_{2}\neq 0
Variable p_{2} cannot be equal to 0.
8p_{3}=x\times 3p_{2}
Multiply both sides of the equation by 3p_{2}.
8p_{3}=3p_{2}x
Reorder the terms.
\frac{8p_{3}}{8}=\frac{3p_{2}x}{8}
Divide both sides by 8.
p_{3}=\frac{3p_{2}x}{8}
Dividing by 8 undoes the multiplication by 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}