Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{8k\left(4k+1\right)}{\left(4k+1\right)\left(k^{2}+4\right)}+\frac{8k\left(k^{2}+4\right)}{\left(4k+1\right)\left(k^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k^{2}+4 and 4k+1 is \left(4k+1\right)\left(k^{2}+4\right). Multiply \frac{8k}{k^{2}+4} times \frac{4k+1}{4k+1}. Multiply \frac{8k}{4k+1} times \frac{k^{2}+4}{k^{2}+4}.
\frac{8k\left(4k+1\right)+8k\left(k^{2}+4\right)}{\left(4k+1\right)\left(k^{2}+4\right)}
Since \frac{8k\left(4k+1\right)}{\left(4k+1\right)\left(k^{2}+4\right)} and \frac{8k\left(k^{2}+4\right)}{\left(4k+1\right)\left(k^{2}+4\right)} have the same denominator, add them by adding their numerators.
\frac{32k^{2}+8k+8k^{3}+32k}{\left(4k+1\right)\left(k^{2}+4\right)}
Do the multiplications in 8k\left(4k+1\right)+8k\left(k^{2}+4\right).
\frac{32k^{2}+40k+8k^{3}}{\left(4k+1\right)\left(k^{2}+4\right)}
Combine like terms in 32k^{2}+8k+8k^{3}+32k.
\frac{32k^{2}+40k+8k^{3}}{4k^{3}+k^{2}+16k+4}
Expand \left(4k+1\right)\left(k^{2}+4\right).