Evaluate
\frac{8k\left(k^{2}+4k+5\right)}{\left(4k+1\right)\left(k^{2}+4\right)}
Factor
\frac{8k\left(k^{2}+4k+5\right)}{\left(4k+1\right)\left(k^{2}+4\right)}
Share
Copied to clipboard
\frac{8k\left(4k+1\right)}{\left(4k+1\right)\left(k^{2}+4\right)}+\frac{8k\left(k^{2}+4\right)}{\left(4k+1\right)\left(k^{2}+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of k^{2}+4 and 4k+1 is \left(4k+1\right)\left(k^{2}+4\right). Multiply \frac{8k}{k^{2}+4} times \frac{4k+1}{4k+1}. Multiply \frac{8k}{4k+1} times \frac{k^{2}+4}{k^{2}+4}.
\frac{8k\left(4k+1\right)+8k\left(k^{2}+4\right)}{\left(4k+1\right)\left(k^{2}+4\right)}
Since \frac{8k\left(4k+1\right)}{\left(4k+1\right)\left(k^{2}+4\right)} and \frac{8k\left(k^{2}+4\right)}{\left(4k+1\right)\left(k^{2}+4\right)} have the same denominator, add them by adding their numerators.
\frac{32k^{2}+8k+8k^{3}+32k}{\left(4k+1\right)\left(k^{2}+4\right)}
Do the multiplications in 8k\left(4k+1\right)+8k\left(k^{2}+4\right).
\frac{32k^{2}+40k+8k^{3}}{\left(4k+1\right)\left(k^{2}+4\right)}
Combine like terms in 32k^{2}+8k+8k^{3}+32k.
\frac{32k^{2}+40k+8k^{3}}{4k^{3}+k^{2}+16k+4}
Expand \left(4k+1\right)\left(k^{2}+4\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}