Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8k+k^{2}+16\right)\left(25k^{2}-1\right)}{\left(15k^{2}+3k\right)\left(16-k^{2}\right)}
Divide \frac{8k+k^{2}+16}{15k^{2}+3k} by \frac{16-k^{2}}{25k^{2}-1} by multiplying \frac{8k+k^{2}+16}{15k^{2}+3k} by the reciprocal of \frac{16-k^{2}}{25k^{2}-1}.
\frac{\left(5k-1\right)\left(5k+1\right)\left(k+4\right)^{2}}{3k\left(k-4\right)\left(-k-4\right)\left(5k+1\right)}
Factor the expressions that are not already factored.
\frac{\left(5k-1\right)\left(k+4\right)^{2}}{3k\left(k-4\right)\left(-k-4\right)}
Cancel out 5k+1 in both numerator and denominator.
\frac{5k^{3}+39k^{2}+72k-16}{-3k^{3}+48k}
Expand the expression.
\frac{\left(8k+k^{2}+16\right)\left(25k^{2}-1\right)}{\left(15k^{2}+3k\right)\left(16-k^{2}\right)}
Divide \frac{8k+k^{2}+16}{15k^{2}+3k} by \frac{16-k^{2}}{25k^{2}-1} by multiplying \frac{8k+k^{2}+16}{15k^{2}+3k} by the reciprocal of \frac{16-k^{2}}{25k^{2}-1}.
\frac{\left(5k-1\right)\left(5k+1\right)\left(k+4\right)^{2}}{3k\left(k-4\right)\left(-k-4\right)\left(5k+1\right)}
Factor the expressions that are not already factored.
\frac{\left(5k-1\right)\left(k+4\right)^{2}}{3k\left(k-4\right)\left(-k-4\right)}
Cancel out 5k+1 in both numerator and denominator.
\frac{5k^{3}+39k^{2}+72k-16}{-3k^{3}+48k}
Expand the expression.