Solve for k
k = -\frac{168}{83} = -2\frac{2}{83} \approx -2.024096386
Share
Copied to clipboard
8k+8=340\left(k+2\right)
Variable k cannot be equal to -2 since division by zero is not defined. Multiply both sides of the equation by 5\left(k+2\right).
8k+8=340k+680
Use the distributive property to multiply 340 by k+2.
8k+8-340k=680
Subtract 340k from both sides.
-332k+8=680
Combine 8k and -340k to get -332k.
-332k=680-8
Subtract 8 from both sides.
-332k=672
Subtract 8 from 680 to get 672.
k=\frac{672}{-332}
Divide both sides by -332.
k=-\frac{168}{83}
Reduce the fraction \frac{672}{-332} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}