Evaluate
\frac{2c\left(c+d\right)}{b+c}
Expand
\frac{2\left(c^{2}+cd\right)}{b+c}
Share
Copied to clipboard
\frac{8c^{3}\left(3c+3d\right)}{6\left(c+b\right)\times 2c^{2}}
Divide \frac{8c^{3}}{6\left(c+b\right)} by \frac{2c^{2}}{3c+3d} by multiplying \frac{8c^{3}}{6\left(c+b\right)} by the reciprocal of \frac{2c^{2}}{3c+3d}.
\frac{2c\left(3c+3d\right)}{3\left(b+c\right)}
Cancel out 2\times 2c^{2} in both numerator and denominator.
\frac{2\times 3c\left(c+d\right)}{3\left(b+c\right)}
Factor the expressions that are not already factored.
\frac{2c\left(c+d\right)}{b+c}
Cancel out 3 in both numerator and denominator.
\frac{2c^{2}+2cd}{b+c}
Expand the expression.
\frac{8c^{3}\left(3c+3d\right)}{6\left(c+b\right)\times 2c^{2}}
Divide \frac{8c^{3}}{6\left(c+b\right)} by \frac{2c^{2}}{3c+3d} by multiplying \frac{8c^{3}}{6\left(c+b\right)} by the reciprocal of \frac{2c^{2}}{3c+3d}.
\frac{2c\left(3c+3d\right)}{3\left(b+c\right)}
Cancel out 2\times 2c^{2} in both numerator and denominator.
\frac{2\times 3c\left(c+d\right)}{3\left(b+c\right)}
Factor the expressions that are not already factored.
\frac{2c\left(c+d\right)}{b+c}
Cancel out 3 in both numerator and denominator.
\frac{2c^{2}+2cd}{b+c}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}