Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{4a}{40-3a-a^{2}}\times \frac{a-8}{2a^{2}-8a}
Combine 8a and -4a to get 4a.
\frac{4a\left(a-8\right)}{\left(40-3a-a^{2}\right)\left(2a^{2}-8a\right)}
Multiply \frac{4a}{40-3a-a^{2}} times \frac{a-8}{2a^{2}-8a} by multiplying numerator times numerator and denominator times denominator.
\frac{4a\left(a-8\right)}{2a\left(a-4\right)\left(a+8\right)\left(-a+5\right)}
Factor the expressions that are not already factored.
\frac{2\left(a-8\right)}{\left(a-4\right)\left(a+8\right)\left(-a+5\right)}
Cancel out 2a in both numerator and denominator.
\frac{2a-16}{-a^{3}+a^{2}+52a-160}
Expand the expression.
\frac{4a}{40-3a-a^{2}}\times \frac{a-8}{2a^{2}-8a}
Combine 8a and -4a to get 4a.
\frac{4a\left(a-8\right)}{\left(40-3a-a^{2}\right)\left(2a^{2}-8a\right)}
Multiply \frac{4a}{40-3a-a^{2}} times \frac{a-8}{2a^{2}-8a} by multiplying numerator times numerator and denominator times denominator.
\frac{4a\left(a-8\right)}{2a\left(a-4\right)\left(a+8\right)\left(-a+5\right)}
Factor the expressions that are not already factored.
\frac{2\left(a-8\right)}{\left(a-4\right)\left(a+8\right)\left(-a+5\right)}
Cancel out 2a in both numerator and denominator.
\frac{2a-16}{-a^{3}+a^{2}+52a-160}
Expand the expression.