Evaluate
\frac{2\left(a-8\right)}{\left(5-a\right)\left(a-4\right)\left(a+8\right)}
Expand
\frac{2\left(a-8\right)}{\left(a-4\right)\left(40-3a-a^{2}\right)}
Share
Copied to clipboard
\frac{4a}{40-3a-a^{2}}\times \frac{a-8}{2a^{2}-8a}
Combine 8a and -4a to get 4a.
\frac{4a\left(a-8\right)}{\left(40-3a-a^{2}\right)\left(2a^{2}-8a\right)}
Multiply \frac{4a}{40-3a-a^{2}} times \frac{a-8}{2a^{2}-8a} by multiplying numerator times numerator and denominator times denominator.
\frac{4a\left(a-8\right)}{2a\left(a-4\right)\left(a+8\right)\left(-a+5\right)}
Factor the expressions that are not already factored.
\frac{2\left(a-8\right)}{\left(a-4\right)\left(a+8\right)\left(-a+5\right)}
Cancel out 2a in both numerator and denominator.
\frac{2a-16}{-a^{3}+a^{2}+52a-160}
Expand the expression.
\frac{4a}{40-3a-a^{2}}\times \frac{a-8}{2a^{2}-8a}
Combine 8a and -4a to get 4a.
\frac{4a\left(a-8\right)}{\left(40-3a-a^{2}\right)\left(2a^{2}-8a\right)}
Multiply \frac{4a}{40-3a-a^{2}} times \frac{a-8}{2a^{2}-8a} by multiplying numerator times numerator and denominator times denominator.
\frac{4a\left(a-8\right)}{2a\left(a-4\right)\left(a+8\right)\left(-a+5\right)}
Factor the expressions that are not already factored.
\frac{2\left(a-8\right)}{\left(a-4\right)\left(a+8\right)\left(-a+5\right)}
Cancel out 2a in both numerator and denominator.
\frac{2a-16}{-a^{3}+a^{2}+52a-160}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}