Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8-i\right)\left(7-4i\right)}{\left(7+4i\right)\left(7-4i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 7-4i.
\frac{\left(8-i\right)\left(7-4i\right)}{7^{2}-4^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8-i\right)\left(7-4i\right)}{65}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 7+8\times \left(-4i\right)-i\times 7-\left(-4i^{2}\right)}{65}
Multiply complex numbers 8-i and 7-4i like you multiply binomials.
\frac{8\times 7+8\times \left(-4i\right)-i\times 7-\left(-4\left(-1\right)\right)}{65}
By definition, i^{2} is -1.
\frac{56-32i-7i-4}{65}
Do the multiplications in 8\times 7+8\times \left(-4i\right)-i\times 7-\left(-4\left(-1\right)\right).
\frac{56-4+\left(-32-7\right)i}{65}
Combine the real and imaginary parts in 56-32i-7i-4.
\frac{52-39i}{65}
Do the additions in 56-4+\left(-32-7\right)i.
\frac{4}{5}-\frac{3}{5}i
Divide 52-39i by 65 to get \frac{4}{5}-\frac{3}{5}i.
Re(\frac{\left(8-i\right)\left(7-4i\right)}{\left(7+4i\right)\left(7-4i\right)})
Multiply both numerator and denominator of \frac{8-i}{7+4i} by the complex conjugate of the denominator, 7-4i.
Re(\frac{\left(8-i\right)\left(7-4i\right)}{7^{2}-4^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8-i\right)\left(7-4i\right)}{65})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 7+8\times \left(-4i\right)-i\times 7-\left(-4i^{2}\right)}{65})
Multiply complex numbers 8-i and 7-4i like you multiply binomials.
Re(\frac{8\times 7+8\times \left(-4i\right)-i\times 7-\left(-4\left(-1\right)\right)}{65})
By definition, i^{2} is -1.
Re(\frac{56-32i-7i-4}{65})
Do the multiplications in 8\times 7+8\times \left(-4i\right)-i\times 7-\left(-4\left(-1\right)\right).
Re(\frac{56-4+\left(-32-7\right)i}{65})
Combine the real and imaginary parts in 56-32i-7i-4.
Re(\frac{52-39i}{65})
Do the additions in 56-4+\left(-32-7\right)i.
Re(\frac{4}{5}-\frac{3}{5}i)
Divide 52-39i by 65 to get \frac{4}{5}-\frac{3}{5}i.
\frac{4}{5}
The real part of \frac{4}{5}-\frac{3}{5}i is \frac{4}{5}.