Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8-7i\right)\left(8-7i\right)}{\left(8+7i\right)\left(8-7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8-7i.
\frac{\left(8-7i\right)\left(8-7i\right)}{8^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8-7i\right)\left(8-7i\right)}{113}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)i^{2}}{113}
Multiply complex numbers 8-7i and 8-7i like you multiply binomials.
\frac{8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)\left(-1\right)}{113}
By definition, i^{2} is -1.
\frac{64-56i-56i-49}{113}
Do the multiplications in 8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)\left(-1\right).
\frac{64-49+\left(-56-56\right)i}{113}
Combine the real and imaginary parts in 64-56i-56i-49.
\frac{15-112i}{113}
Do the additions in 64-49+\left(-56-56\right)i.
\frac{15}{113}-\frac{112}{113}i
Divide 15-112i by 113 to get \frac{15}{113}-\frac{112}{113}i.
Re(\frac{\left(8-7i\right)\left(8-7i\right)}{\left(8+7i\right)\left(8-7i\right)})
Multiply both numerator and denominator of \frac{8-7i}{8+7i} by the complex conjugate of the denominator, 8-7i.
Re(\frac{\left(8-7i\right)\left(8-7i\right)}{8^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8-7i\right)\left(8-7i\right)}{113})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)i^{2}}{113})
Multiply complex numbers 8-7i and 8-7i like you multiply binomials.
Re(\frac{8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)\left(-1\right)}{113})
By definition, i^{2} is -1.
Re(\frac{64-56i-56i-49}{113})
Do the multiplications in 8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)\left(-1\right).
Re(\frac{64-49+\left(-56-56\right)i}{113})
Combine the real and imaginary parts in 64-56i-56i-49.
Re(\frac{15-112i}{113})
Do the additions in 64-49+\left(-56-56\right)i.
Re(\frac{15}{113}-\frac{112}{113}i)
Divide 15-112i by 113 to get \frac{15}{113}-\frac{112}{113}i.
\frac{15}{113}
The real part of \frac{15}{113}-\frac{112}{113}i is \frac{15}{113}.