Evaluate
\frac{15}{113}-\frac{112}{113}i\approx 0.132743363-0.991150442i
Real Part
\frac{15}{113} = 0.13274336283185842
Share
Copied to clipboard
\frac{\left(8-7i\right)\left(8-7i\right)}{\left(8+7i\right)\left(8-7i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 8-7i.
\frac{\left(8-7i\right)\left(8-7i\right)}{8^{2}-7^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8-7i\right)\left(8-7i\right)}{113}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)i^{2}}{113}
Multiply complex numbers 8-7i and 8-7i like you multiply binomials.
\frac{8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)\left(-1\right)}{113}
By definition, i^{2} is -1.
\frac{64-56i-56i-49}{113}
Do the multiplications in 8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)\left(-1\right).
\frac{64-49+\left(-56-56\right)i}{113}
Combine the real and imaginary parts in 64-56i-56i-49.
\frac{15-112i}{113}
Do the additions in 64-49+\left(-56-56\right)i.
\frac{15}{113}-\frac{112}{113}i
Divide 15-112i by 113 to get \frac{15}{113}-\frac{112}{113}i.
Re(\frac{\left(8-7i\right)\left(8-7i\right)}{\left(8+7i\right)\left(8-7i\right)})
Multiply both numerator and denominator of \frac{8-7i}{8+7i} by the complex conjugate of the denominator, 8-7i.
Re(\frac{\left(8-7i\right)\left(8-7i\right)}{8^{2}-7^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8-7i\right)\left(8-7i\right)}{113})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)i^{2}}{113})
Multiply complex numbers 8-7i and 8-7i like you multiply binomials.
Re(\frac{8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)\left(-1\right)}{113})
By definition, i^{2} is -1.
Re(\frac{64-56i-56i-49}{113})
Do the multiplications in 8\times 8+8\times \left(-7i\right)-7i\times 8-7\left(-7\right)\left(-1\right).
Re(\frac{64-49+\left(-56-56\right)i}{113})
Combine the real and imaginary parts in 64-56i-56i-49.
Re(\frac{15-112i}{113})
Do the additions in 64-49+\left(-56-56\right)i.
Re(\frac{15}{113}-\frac{112}{113}i)
Divide 15-112i by 113 to get \frac{15}{113}-\frac{112}{113}i.
\frac{15}{113}
The real part of \frac{15}{113}-\frac{112}{113}i is \frac{15}{113}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}