\frac { 8 - 0.2 d t } { 1 + t } = 1.75 d \theta
Solve for d
d=\frac{160}{35t\theta +4t+35\theta }
\left(\theta =-\frac{4}{35}\text{ or }t\neq -\frac{35\theta }{35\theta +4}\right)\text{ and }t\neq -1
Solve for t
\left\{\begin{matrix}\\t\neq -1\text{, }&\text{unconditionally}\\t=-\frac{5\left(7d\theta -32\right)}{d\left(35\theta +4\right)}\text{, }&d\neq -40\text{ and }\theta \neq -\frac{4}{35}\text{ and }d\neq 0\end{matrix}\right.
Graph
Share
Copied to clipboard
8-0.2dt=1.75d\theta \left(t+1\right)
Multiply both sides of the equation by t+1.
8-0.2dt=1.75d\theta t+1.75d\theta
Use the distributive property to multiply 1.75d\theta by t+1.
8-0.2dt-1.75d\theta t=1.75d\theta
Subtract 1.75d\theta t from both sides.
8-0.2dt-1.75d\theta t-1.75d\theta =0
Subtract 1.75d\theta from both sides.
-0.2dt-1.75d\theta t-1.75d\theta =-8
Subtract 8 from both sides. Anything subtracted from zero gives its negation.
\left(-0.2t-1.75\theta t-1.75\theta \right)d=-8
Combine all terms containing d.
\left(-\frac{7t\theta }{4}-\frac{t}{5}-\frac{7\theta }{4}\right)d=-8
The equation is in standard form.
\frac{\left(-\frac{7t\theta }{4}-\frac{t}{5}-\frac{7\theta }{4}\right)d}{-\frac{7t\theta }{4}-\frac{t}{5}-\frac{7\theta }{4}}=-\frac{8}{-\frac{7t\theta }{4}-\frac{t}{5}-\frac{7\theta }{4}}
Divide both sides by -0.2t-1.75\theta t-1.75\theta .
d=-\frac{8}{-\frac{7t\theta }{4}-\frac{t}{5}-\frac{7\theta }{4}}
Dividing by -0.2t-1.75\theta t-1.75\theta undoes the multiplication by -0.2t-1.75\theta t-1.75\theta .
d=\frac{8}{\frac{7t\theta }{4}+\frac{t}{5}+\frac{7\theta }{4}}
Divide -8 by -0.2t-1.75\theta t-1.75\theta .
8-0.2dt=1.75d\theta \left(t+1\right)
Variable t cannot be equal to -1 since division by zero is not defined. Multiply both sides of the equation by t+1.
8-0.2dt=1.75d\theta t+1.75d\theta
Use the distributive property to multiply 1.75d\theta by t+1.
8-0.2dt-1.75d\theta t=1.75d\theta
Subtract 1.75d\theta t from both sides.
-0.2dt-1.75d\theta t=1.75d\theta -8
Subtract 8 from both sides.
\left(-0.2d-1.75d\theta \right)t=1.75d\theta -8
Combine all terms containing t.
\left(-\frac{7d\theta }{4}-\frac{d}{5}\right)t=\frac{7d\theta }{4}-8
The equation is in standard form.
\frac{\left(-\frac{7d\theta }{4}-\frac{d}{5}\right)t}{-\frac{7d\theta }{4}-\frac{d}{5}}=\frac{\frac{7d\theta }{4}-8}{-\frac{7d\theta }{4}-\frac{d}{5}}
Divide both sides by -0.2d-1.75d\theta .
t=\frac{\frac{7d\theta }{4}-8}{-\frac{7d\theta }{4}-\frac{d}{5}}
Dividing by -0.2d-1.75d\theta undoes the multiplication by -0.2d-1.75d\theta .
t=\frac{7d\theta -32}{-4d\left(\frac{7\theta }{4}+0.2\right)}
Divide \frac{7d\theta }{4}-8 by -0.2d-1.75d\theta .
t=\frac{7d\theta -32}{-4d\left(\frac{7\theta }{4}+0.2\right)}\text{, }t\neq -1
Variable t cannot be equal to -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}