Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{8}{\left(x-3\right)\left(x+3\right)}-\frac{5}{\left(x+3\right)^{2}}
Factor x^{2}-9. Factor x^{2}+6x+9.
\frac{8\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^{2}}-\frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-3\right)\left(x+3\right) and \left(x+3\right)^{2} is \left(x-3\right)\left(x+3\right)^{2}. Multiply \frac{8}{\left(x-3\right)\left(x+3\right)} times \frac{x+3}{x+3}. Multiply \frac{5}{\left(x+3\right)^{2}} times \frac{x-3}{x-3}.
\frac{8\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)^{2}}
Since \frac{8\left(x+3\right)}{\left(x-3\right)\left(x+3\right)^{2}} and \frac{5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{8x+24-5x+15}{\left(x-3\right)\left(x+3\right)^{2}}
Do the multiplications in 8\left(x+3\right)-5\left(x-3\right).
\frac{3x+39}{\left(x-3\right)\left(x+3\right)^{2}}
Combine like terms in 8x+24-5x+15.
\frac{3x+39}{x^{3}+3x^{2}-9x-27}
Expand \left(x-3\right)\left(x+3\right)^{2}.