Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{8}{\left(x-4\right)\left(x+4\right)}-\frac{7}{\left(x-4\right)\left(x+3\right)}
Factor x^{2}-16. Factor x^{2}-x-12.
\frac{8\left(x+3\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}-\frac{7\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and \left(x-4\right)\left(x+3\right) is \left(x-4\right)\left(x+3\right)\left(x+4\right). Multiply \frac{8}{\left(x-4\right)\left(x+4\right)} times \frac{x+3}{x+3}. Multiply \frac{7}{\left(x-4\right)\left(x+3\right)} times \frac{x+4}{x+4}.
\frac{8\left(x+3\right)-7\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}
Since \frac{8\left(x+3\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)} and \frac{7\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{8x+24-7x-28}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}
Do the multiplications in 8\left(x+3\right)-7\left(x+4\right).
\frac{x-4}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}
Combine like terms in 8x+24-7x-28.
\frac{1}{\left(x+3\right)\left(x+4\right)}
Cancel out x-4 in both numerator and denominator.
\frac{1}{x^{2}+7x+12}
Expand \left(x+3\right)\left(x+4\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8}{\left(x-4\right)\left(x+4\right)}-\frac{7}{\left(x-4\right)\left(x+3\right)})
Factor x^{2}-16. Factor x^{2}-x-12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8\left(x+3\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)}-\frac{7\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x-4\right)\left(x+4\right) and \left(x-4\right)\left(x+3\right) is \left(x-4\right)\left(x+3\right)\left(x+4\right). Multiply \frac{8}{\left(x-4\right)\left(x+4\right)} times \frac{x+3}{x+3}. Multiply \frac{7}{\left(x-4\right)\left(x+3\right)} times \frac{x+4}{x+4}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8\left(x+3\right)-7\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)})
Since \frac{8\left(x+3\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)} and \frac{7\left(x+4\right)}{\left(x-4\right)\left(x+3\right)\left(x+4\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8x+24-7x-28}{\left(x-4\right)\left(x+3\right)\left(x+4\right)})
Do the multiplications in 8\left(x+3\right)-7\left(x+4\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x-4}{\left(x-4\right)\left(x+3\right)\left(x+4\right)})
Combine like terms in 8x+24-7x-28.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(x+3\right)\left(x+4\right)})
Cancel out x-4 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x^{2}+7x+12})
Use the distributive property to multiply x+3 by x+4 and combine like terms.
-\left(x^{2}+7x^{1}+12\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+7x^{1}+12)
If F is the composition of two differentiable functions f\left(u\right) and u=g\left(x\right), that is, if F\left(x\right)=f\left(g\left(x\right)\right), then the derivative of F is the derivative of f with respect to u times the derivative of g with respect to x, that is, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{2}+7x^{1}+12\right)^{-2}\left(2x^{2-1}+7x^{1-1}\right)
The derivative of a polynomial is the sum of the derivatives of its terms. The derivative of a constant term is 0. The derivative of ax^{n} is nax^{n-1}.
\left(x^{2}+7x^{1}+12\right)^{-2}\left(-2x^{1}-7x^{0}\right)
Simplify.
\left(x^{2}+7x+12\right)^{-2}\left(-2x-7x^{0}\right)
For any term t, t^{1}=t.
\left(x^{2}+7x+12\right)^{-2}\left(-2x-7\right)
For any term t except 0, t^{0}=1.