Evaluate
\frac{1}{10}=0.1
Factor
\frac{1}{2 \cdot 5} = 0.1
Share
Copied to clipboard
\frac{8}{9}-\left(\frac{10}{45}+\frac{9}{45}-\left(\frac{4}{15}\times \frac{45}{16}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Least common multiple of 9 and 5 is 45. Convert \frac{2}{9} and \frac{1}{5} to fractions with denominator 45.
\frac{8}{9}-\left(\frac{10+9}{45}-\left(\frac{4}{15}\times \frac{45}{16}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Since \frac{10}{45} and \frac{9}{45} have the same denominator, add them by adding their numerators.
\frac{8}{9}-\left(\frac{19}{45}-\left(\frac{4}{15}\times \frac{45}{16}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Add 10 and 9 to get 19.
\frac{8}{9}-\left(\frac{19}{45}-\left(\frac{4\times 45}{15\times 16}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Multiply \frac{4}{15} times \frac{45}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{9}-\left(\frac{19}{45}-\left(\frac{180}{240}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Do the multiplications in the fraction \frac{4\times 45}{15\times 16}.
\frac{8}{9}-\left(\frac{19}{45}-\left(\frac{3}{4}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Reduce the fraction \frac{180}{240} to lowest terms by extracting and canceling out 60.
\frac{8}{9}-\left(\frac{19}{45}-\frac{3-1}{4}\times \frac{3}{5}+\frac{2}{3}\right)
Since \frac{3}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{9}-\left(\frac{19}{45}-\frac{2}{4}\times \frac{3}{5}+\frac{2}{3}\right)
Subtract 1 from 3 to get 2.
\frac{8}{9}-\left(\frac{19}{45}-\frac{1}{2}\times \frac{3}{5}+\frac{2}{3}\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{8}{9}-\left(\frac{19}{45}-\frac{1\times 3}{2\times 5}+\frac{2}{3}\right)
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{9}-\left(\frac{19}{45}-\frac{3}{10}+\frac{2}{3}\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
\frac{8}{9}-\left(\frac{38}{90}-\frac{27}{90}+\frac{2}{3}\right)
Least common multiple of 45 and 10 is 90. Convert \frac{19}{45} and \frac{3}{10} to fractions with denominator 90.
\frac{8}{9}-\left(\frac{38-27}{90}+\frac{2}{3}\right)
Since \frac{38}{90} and \frac{27}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{9}-\left(\frac{11}{90}+\frac{2}{3}\right)
Subtract 27 from 38 to get 11.
\frac{8}{9}-\left(\frac{11}{90}+\frac{60}{90}\right)
Least common multiple of 90 and 3 is 90. Convert \frac{11}{90} and \frac{2}{3} to fractions with denominator 90.
\frac{8}{9}-\frac{11+60}{90}
Since \frac{11}{90} and \frac{60}{90} have the same denominator, add them by adding their numerators.
\frac{8}{9}-\frac{71}{90}
Add 11 and 60 to get 71.
\frac{80}{90}-\frac{71}{90}
Least common multiple of 9 and 90 is 90. Convert \frac{8}{9} and \frac{71}{90} to fractions with denominator 90.
\frac{80-71}{90}
Since \frac{80}{90} and \frac{71}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{90}
Subtract 71 from 80 to get 9.
\frac{1}{10}
Reduce the fraction \frac{9}{90} to lowest terms by extracting and canceling out 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}