Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{8}{9}-\left(\frac{10}{45}+\frac{9}{45}-\left(\frac{4}{15}\times \frac{45}{16}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Least common multiple of 9 and 5 is 45. Convert \frac{2}{9} and \frac{1}{5} to fractions with denominator 45.
\frac{8}{9}-\left(\frac{10+9}{45}-\left(\frac{4}{15}\times \frac{45}{16}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Since \frac{10}{45} and \frac{9}{45} have the same denominator, add them by adding their numerators.
\frac{8}{9}-\left(\frac{19}{45}-\left(\frac{4}{15}\times \frac{45}{16}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Add 10 and 9 to get 19.
\frac{8}{9}-\left(\frac{19}{45}-\left(\frac{4\times 45}{15\times 16}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Multiply \frac{4}{15} times \frac{45}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{9}-\left(\frac{19}{45}-\left(\frac{180}{240}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Do the multiplications in the fraction \frac{4\times 45}{15\times 16}.
\frac{8}{9}-\left(\frac{19}{45}-\left(\frac{3}{4}-\frac{1}{4}\right)\times \frac{3}{5}+\frac{2}{3}\right)
Reduce the fraction \frac{180}{240} to lowest terms by extracting and canceling out 60.
\frac{8}{9}-\left(\frac{19}{45}-\frac{3-1}{4}\times \frac{3}{5}+\frac{2}{3}\right)
Since \frac{3}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{9}-\left(\frac{19}{45}-\frac{2}{4}\times \frac{3}{5}+\frac{2}{3}\right)
Subtract 1 from 3 to get 2.
\frac{8}{9}-\left(\frac{19}{45}-\frac{1}{2}\times \frac{3}{5}+\frac{2}{3}\right)
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{8}{9}-\left(\frac{19}{45}-\frac{1\times 3}{2\times 5}+\frac{2}{3}\right)
Multiply \frac{1}{2} times \frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{9}-\left(\frac{19}{45}-\frac{3}{10}+\frac{2}{3}\right)
Do the multiplications in the fraction \frac{1\times 3}{2\times 5}.
\frac{8}{9}-\left(\frac{38}{90}-\frac{27}{90}+\frac{2}{3}\right)
Least common multiple of 45 and 10 is 90. Convert \frac{19}{45} and \frac{3}{10} to fractions with denominator 90.
\frac{8}{9}-\left(\frac{38-27}{90}+\frac{2}{3}\right)
Since \frac{38}{90} and \frac{27}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{8}{9}-\left(\frac{11}{90}+\frac{2}{3}\right)
Subtract 27 from 38 to get 11.
\frac{8}{9}-\left(\frac{11}{90}+\frac{60}{90}\right)
Least common multiple of 90 and 3 is 90. Convert \frac{11}{90} and \frac{2}{3} to fractions with denominator 90.
\frac{8}{9}-\frac{11+60}{90}
Since \frac{11}{90} and \frac{60}{90} have the same denominator, add them by adding their numerators.
\frac{8}{9}-\frac{71}{90}
Add 11 and 60 to get 71.
\frac{80}{90}-\frac{71}{90}
Least common multiple of 9 and 90 is 90. Convert \frac{8}{9} and \frac{71}{90} to fractions with denominator 90.
\frac{80-71}{90}
Since \frac{80}{90} and \frac{71}{90} have the same denominator, subtract them by subtracting their numerators.
\frac{9}{90}
Subtract 71 from 80 to get 9.
\frac{1}{10}
Reduce the fraction \frac{9}{90} to lowest terms by extracting and canceling out 9.