Evaluate
\frac{35}{9}\approx 3.888888889
Factor
\frac{5 \cdot 7}{3 ^ {2}} = 3\frac{8}{9} = 3.888888888888889
Share
Copied to clipboard
\frac{8}{9}+\frac{6\times 2}{7\times 3}+\frac{2\times 7+3}{7}
Multiply \frac{6}{7} times \frac{2}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{9}+\frac{12}{21}+\frac{2\times 7+3}{7}
Do the multiplications in the fraction \frac{6\times 2}{7\times 3}.
\frac{8}{9}+\frac{4}{7}+\frac{2\times 7+3}{7}
Reduce the fraction \frac{12}{21} to lowest terms by extracting and canceling out 3.
\frac{56}{63}+\frac{36}{63}+\frac{2\times 7+3}{7}
Least common multiple of 9 and 7 is 63. Convert \frac{8}{9} and \frac{4}{7} to fractions with denominator 63.
\frac{56+36}{63}+\frac{2\times 7+3}{7}
Since \frac{56}{63} and \frac{36}{63} have the same denominator, add them by adding their numerators.
\frac{92}{63}+\frac{2\times 7+3}{7}
Add 56 and 36 to get 92.
\frac{92}{63}+\frac{14+3}{7}
Multiply 2 and 7 to get 14.
\frac{92}{63}+\frac{17}{7}
Add 14 and 3 to get 17.
\frac{92}{63}+\frac{153}{63}
Least common multiple of 63 and 7 is 63. Convert \frac{92}{63} and \frac{17}{7} to fractions with denominator 63.
\frac{92+153}{63}
Since \frac{92}{63} and \frac{153}{63} have the same denominator, add them by adding their numerators.
\frac{245}{63}
Add 92 and 153 to get 245.
\frac{35}{9}
Reduce the fraction \frac{245}{63} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}