Verify
true
Share
Copied to clipboard
\frac{8}{9}+\frac{1\times 5}{3\times 6}=\frac{8}{9}+\frac{5}{18}
Multiply \frac{1}{3} times \frac{5}{6} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{9}+\frac{5}{18}=\frac{8}{9}+\frac{5}{18}
Do the multiplications in the fraction \frac{1\times 5}{3\times 6}.
\frac{16}{18}+\frac{5}{18}=\frac{8}{9}+\frac{5}{18}
Least common multiple of 9 and 18 is 18. Convert \frac{8}{9} and \frac{5}{18} to fractions with denominator 18.
\frac{16+5}{18}=\frac{8}{9}+\frac{5}{18}
Since \frac{16}{18} and \frac{5}{18} have the same denominator, add them by adding their numerators.
\frac{21}{18}=\frac{8}{9}+\frac{5}{18}
Add 16 and 5 to get 21.
\frac{7}{6}=\frac{8}{9}+\frac{5}{18}
Reduce the fraction \frac{21}{18} to lowest terms by extracting and canceling out 3.
\frac{7}{6}=\frac{16}{18}+\frac{5}{18}
Least common multiple of 9 and 18 is 18. Convert \frac{8}{9} and \frac{5}{18} to fractions with denominator 18.
\frac{7}{6}=\frac{16+5}{18}
Since \frac{16}{18} and \frac{5}{18} have the same denominator, add them by adding their numerators.
\frac{7}{6}=\frac{21}{18}
Add 16 and 5 to get 21.
\frac{7}{6}=\frac{7}{6}
Reduce the fraction \frac{21}{18} to lowest terms by extracting and canceling out 3.
\text{true}
Compare \frac{7}{6} and \frac{7}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}