Evaluate
-\frac{31}{21}\approx -1.476190476
Factor
-\frac{31}{21} = -1\frac{10}{21} = -1.4761904761904763
Share
Copied to clipboard
\frac{\frac{8}{7}}{-\frac{2}{9}}-\frac{1}{2}\sqrt[3]{-64}+\sqrt{\frac{1\times 9+7}{9}+1}
Calculate \sqrt[3]{\frac{8}{729}} and get \frac{2}{9}.
\frac{8}{7}\left(-\frac{9}{2}\right)-\frac{1}{2}\sqrt[3]{-64}+\sqrt{\frac{1\times 9+7}{9}+1}
Divide \frac{8}{7} by -\frac{2}{9} by multiplying \frac{8}{7} by the reciprocal of -\frac{2}{9}.
-\frac{36}{7}-\frac{1}{2}\sqrt[3]{-64}+\sqrt{\frac{1\times 9+7}{9}+1}
Multiply \frac{8}{7} and -\frac{9}{2} to get -\frac{36}{7}.
-\frac{36}{7}-\frac{1}{2}\left(-4\right)+\sqrt{\frac{1\times 9+7}{9}+1}
Calculate \sqrt[3]{-64} and get -4.
-\frac{36}{7}+2+\sqrt{\frac{1\times 9+7}{9}+1}
Multiply -\frac{1}{2} and -4 to get 2.
-\frac{22}{7}+\sqrt{\frac{1\times 9+7}{9}+1}
Add -\frac{36}{7} and 2 to get -\frac{22}{7}.
-\frac{22}{7}+\sqrt{\frac{9+7}{9}+1}
Multiply 1 and 9 to get 9.
-\frac{22}{7}+\sqrt{\frac{16}{9}+1}
Add 9 and 7 to get 16.
-\frac{22}{7}+\sqrt{\frac{25}{9}}
Add \frac{16}{9} and 1 to get \frac{25}{9}.
-\frac{22}{7}+\frac{5}{3}
Rewrite the square root of the division \frac{25}{9} as the division of square roots \frac{\sqrt{25}}{\sqrt{9}}. Take the square root of both numerator and denominator.
-\frac{31}{21}
Add -\frac{22}{7} and \frac{5}{3} to get -\frac{31}{21}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}