Evaluate
\frac{2}{7}\approx 0.285714286
Factor
\frac{2}{7} = 0.2857142857142857
Share
Copied to clipboard
\frac{\frac{8}{49}}{\frac{9}{8}-\left(\frac{7}{56}+\frac{24}{56}\right)}
Least common multiple of 8 and 7 is 56. Convert \frac{1}{8} and \frac{3}{7} to fractions with denominator 56.
\frac{\frac{8}{49}}{\frac{9}{8}-\frac{7+24}{56}}
Since \frac{7}{56} and \frac{24}{56} have the same denominator, add them by adding their numerators.
\frac{\frac{8}{49}}{\frac{9}{8}-\frac{31}{56}}
Add 7 and 24 to get 31.
\frac{\frac{8}{49}}{\frac{63}{56}-\frac{31}{56}}
Least common multiple of 8 and 56 is 56. Convert \frac{9}{8} and \frac{31}{56} to fractions with denominator 56.
\frac{\frac{8}{49}}{\frac{63-31}{56}}
Since \frac{63}{56} and \frac{31}{56} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{8}{49}}{\frac{32}{56}}
Subtract 31 from 63 to get 32.
\frac{\frac{8}{49}}{\frac{4}{7}}
Reduce the fraction \frac{32}{56} to lowest terms by extracting and canceling out 8.
\frac{8}{49}\times \frac{7}{4}
Divide \frac{8}{49} by \frac{4}{7} by multiplying \frac{8}{49} by the reciprocal of \frac{4}{7}.
\frac{8\times 7}{49\times 4}
Multiply \frac{8}{49} times \frac{7}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{56}{196}
Do the multiplications in the fraction \frac{8\times 7}{49\times 4}.
\frac{2}{7}
Reduce the fraction \frac{56}{196} to lowest terms by extracting and canceling out 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}