Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4}{23}\times 2=\frac{2}{3}x^{2}-\frac{4}{3}x-2
Reduce the fraction \frac{8}{46} to lowest terms by extracting and canceling out 2.
\frac{8}{23}=\frac{2}{3}x^{2}-\frac{4}{3}x-2
Multiply \frac{4}{23} and 2 to get \frac{8}{23}.
\frac{2}{3}x^{2}-\frac{4}{3}x-2=\frac{8}{23}
Swap sides so that all variable terms are on the left hand side.
\frac{2}{3}x^{2}-\frac{4}{3}x-2-\frac{8}{23}=0
Subtract \frac{8}{23} from both sides.
\frac{2}{3}x^{2}-\frac{4}{3}x-\frac{54}{23}=0
Subtract \frac{8}{23} from -2 to get -\frac{54}{23}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{2}{3}\left(-\frac{54}{23}\right)}}{2\times \frac{2}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{2}{3} for a, -\frac{4}{3} for b, and -\frac{54}{23} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times \frac{2}{3}\left(-\frac{54}{23}\right)}}{2\times \frac{2}{3}}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-\frac{8}{3}\left(-\frac{54}{23}\right)}}{2\times \frac{2}{3}}
Multiply -4 times \frac{2}{3}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}+\frac{144}{23}}}{2\times \frac{2}{3}}
Multiply -\frac{8}{3} times -\frac{54}{23} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{1664}{207}}}{2\times \frac{2}{3}}
Add \frac{16}{9} to \frac{144}{23} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{8\sqrt{598}}{69}}{2\times \frac{2}{3}}
Take the square root of \frac{1664}{207}.
x=\frac{\frac{4}{3}±\frac{8\sqrt{598}}{69}}{2\times \frac{2}{3}}
The opposite of -\frac{4}{3} is \frac{4}{3}.
x=\frac{\frac{4}{3}±\frac{8\sqrt{598}}{69}}{\frac{4}{3}}
Multiply 2 times \frac{2}{3}.
x=\frac{\frac{8\sqrt{598}}{69}+\frac{4}{3}}{\frac{4}{3}}
Now solve the equation x=\frac{\frac{4}{3}±\frac{8\sqrt{598}}{69}}{\frac{4}{3}} when ± is plus. Add \frac{4}{3} to \frac{8\sqrt{598}}{69}.
x=\frac{2\sqrt{598}}{23}+1
Divide \frac{4}{3}+\frac{8\sqrt{598}}{69} by \frac{4}{3} by multiplying \frac{4}{3}+\frac{8\sqrt{598}}{69} by the reciprocal of \frac{4}{3}.
x=\frac{-\frac{8\sqrt{598}}{69}+\frac{4}{3}}{\frac{4}{3}}
Now solve the equation x=\frac{\frac{4}{3}±\frac{8\sqrt{598}}{69}}{\frac{4}{3}} when ± is minus. Subtract \frac{8\sqrt{598}}{69} from \frac{4}{3}.
x=-\frac{2\sqrt{598}}{23}+1
Divide \frac{4}{3}-\frac{8\sqrt{598}}{69} by \frac{4}{3} by multiplying \frac{4}{3}-\frac{8\sqrt{598}}{69} by the reciprocal of \frac{4}{3}.
x=\frac{2\sqrt{598}}{23}+1 x=-\frac{2\sqrt{598}}{23}+1
The equation is now solved.
\frac{4}{23}\times 2=\frac{2}{3}x^{2}-\frac{4}{3}x-2
Reduce the fraction \frac{8}{46} to lowest terms by extracting and canceling out 2.
\frac{8}{23}=\frac{2}{3}x^{2}-\frac{4}{3}x-2
Multiply \frac{4}{23} and 2 to get \frac{8}{23}.
\frac{2}{3}x^{2}-\frac{4}{3}x-2=\frac{8}{23}
Swap sides so that all variable terms are on the left hand side.
\frac{2}{3}x^{2}-\frac{4}{3}x=\frac{8}{23}+2
Add 2 to both sides.
\frac{2}{3}x^{2}-\frac{4}{3}x=\frac{54}{23}
Add \frac{8}{23} and 2 to get \frac{54}{23}.
\frac{\frac{2}{3}x^{2}-\frac{4}{3}x}{\frac{2}{3}}=\frac{\frac{54}{23}}{\frac{2}{3}}
Divide both sides of the equation by \frac{2}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{4}{3}}{\frac{2}{3}}\right)x=\frac{\frac{54}{23}}{\frac{2}{3}}
Dividing by \frac{2}{3} undoes the multiplication by \frac{2}{3}.
x^{2}-2x=\frac{\frac{54}{23}}{\frac{2}{3}}
Divide -\frac{4}{3} by \frac{2}{3} by multiplying -\frac{4}{3} by the reciprocal of \frac{2}{3}.
x^{2}-2x=\frac{81}{23}
Divide \frac{54}{23} by \frac{2}{3} by multiplying \frac{54}{23} by the reciprocal of \frac{2}{3}.
x^{2}-2x+1=\frac{81}{23}+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=\frac{104}{23}
Add \frac{81}{23} to 1.
\left(x-1\right)^{2}=\frac{104}{23}
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{\frac{104}{23}}
Take the square root of both sides of the equation.
x-1=\frac{2\sqrt{598}}{23} x-1=-\frac{2\sqrt{598}}{23}
Simplify.
x=\frac{2\sqrt{598}}{23}+1 x=-\frac{2\sqrt{598}}{23}+1
Add 1 to both sides of the equation.