Evaluate
\frac{1002}{5}=200.4
Factor
\frac{2 \cdot 3 \cdot 167}{5} = 200\frac{2}{5} = 200.4
Share
Copied to clipboard
2\left(82-2\right)-2\times \frac{3^{3}-2^{7}}{5}
Divide 8 by 4 to get 2.
2\times 80-2\times \frac{3^{3}-2^{7}}{5}
Subtract 2 from 82 to get 80.
160-2\times \frac{3^{3}-2^{7}}{5}
Multiply 2 and 80 to get 160.
160-2\times \frac{27-2^{7}}{5}
Calculate 3 to the power of 3 and get 27.
160-2\times \frac{27-128}{5}
Calculate 2 to the power of 7 and get 128.
160-2\times \frac{-101}{5}
Subtract 128 from 27 to get -101.
160-2\left(-\frac{101}{5}\right)
Fraction \frac{-101}{5} can be rewritten as -\frac{101}{5} by extracting the negative sign.
160-\frac{2\left(-101\right)}{5}
Express 2\left(-\frac{101}{5}\right) as a single fraction.
160-\frac{-202}{5}
Multiply 2 and -101 to get -202.
160-\left(-\frac{202}{5}\right)
Fraction \frac{-202}{5} can be rewritten as -\frac{202}{5} by extracting the negative sign.
160+\frac{202}{5}
The opposite of -\frac{202}{5} is \frac{202}{5}.
\frac{800}{5}+\frac{202}{5}
Convert 160 to fraction \frac{800}{5}.
\frac{800+202}{5}
Since \frac{800}{5} and \frac{202}{5} have the same denominator, add them by adding their numerators.
\frac{1002}{5}
Add 800 and 202 to get 1002.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}