Solve for k
k = \frac{29}{12} = 2\frac{5}{12} \approx 2.416666667
Share
Copied to clipboard
8-3\times 5=12\left(k-3\right)
Variable k cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by 3\left(k-3\right), the least common multiple of 3k-9,k-3.
8-15=12\left(k-3\right)
Multiply -3 and 5 to get -15.
-7=12\left(k-3\right)
Subtract 15 from 8 to get -7.
-7=12k-36
Use the distributive property to multiply 12 by k-3.
12k-36=-7
Swap sides so that all variable terms are on the left hand side.
12k=-7+36
Add 36 to both sides.
12k=29
Add -7 and 36 to get 29.
k=\frac{29}{12}
Divide both sides by 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}