Solve for m
m\geq \frac{10}{3}
Share
Copied to clipboard
\frac{8}{3}-m-\frac{10}{3}\geq \frac{8}{3}-2m-\left(m-\frac{10}{3}\right)
Combine -2m and m to get -m.
\frac{8-10}{3}-m\geq \frac{8}{3}-2m-\left(m-\frac{10}{3}\right)
Since \frac{8}{3} and \frac{10}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{2}{3}-m\geq \frac{8}{3}-2m-\left(m-\frac{10}{3}\right)
Subtract 10 from 8 to get -2.
-\frac{2}{3}-m\geq \frac{8}{3}-2m-m-\left(-\frac{10}{3}\right)
To find the opposite of m-\frac{10}{3}, find the opposite of each term.
-\frac{2}{3}-m\geq \frac{8}{3}-2m-m+\frac{10}{3}
The opposite of -\frac{10}{3} is \frac{10}{3}.
-\frac{2}{3}-m\geq \frac{8}{3}-3m+\frac{10}{3}
Combine -2m and -m to get -3m.
-\frac{2}{3}-m\geq \frac{8+10}{3}-3m
Since \frac{8}{3} and \frac{10}{3} have the same denominator, add them by adding their numerators.
-\frac{2}{3}-m\geq \frac{18}{3}-3m
Add 8 and 10 to get 18.
-\frac{2}{3}-m\geq 6-3m
Divide 18 by 3 to get 6.
-\frac{2}{3}-m+3m\geq 6
Add 3m to both sides.
-\frac{2}{3}+2m\geq 6
Combine -m and 3m to get 2m.
2m\geq 6+\frac{2}{3}
Add \frac{2}{3} to both sides.
2m\geq \frac{18}{3}+\frac{2}{3}
Convert 6 to fraction \frac{18}{3}.
2m\geq \frac{18+2}{3}
Since \frac{18}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
2m\geq \frac{20}{3}
Add 18 and 2 to get 20.
m\geq \frac{\frac{20}{3}}{2}
Divide both sides by 2. Since 2 is positive, the inequality direction remains the same.
m\geq \frac{20}{3\times 2}
Express \frac{\frac{20}{3}}{2} as a single fraction.
m\geq \frac{20}{6}
Multiply 3 and 2 to get 6.
m\geq \frac{10}{3}
Reduce the fraction \frac{20}{6} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}