Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{8}{2-2i\sqrt{3}}\times 1
Divide 2-2i\sqrt{3} by 2-2i\sqrt{3} to get 1.
\frac{8\left(2+2i\sqrt{3}\right)}{\left(2-2i\sqrt{3}\right)\left(2+2i\sqrt{3}\right)}\times 1
Rationalize the denominator of \frac{8}{2-2i\sqrt{3}} by multiplying numerator and denominator by 2+2i\sqrt{3}.
\frac{8\left(2+2i\sqrt{3}\right)}{2^{2}-\left(-2i\sqrt{3}\right)^{2}}\times 1
Consider \left(2-2i\sqrt{3}\right)\left(2+2i\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(2+2i\sqrt{3}\right)}{4-\left(-2i\sqrt{3}\right)^{2}}\times 1
Calculate 2 to the power of 2 and get 4.
\frac{8\left(2+2i\sqrt{3}\right)}{4-\left(-2i\right)^{2}\left(\sqrt{3}\right)^{2}}\times 1
Expand \left(-2i\sqrt{3}\right)^{2}.
\frac{8\left(2+2i\sqrt{3}\right)}{4-\left(-4\left(\sqrt{3}\right)^{2}\right)}\times 1
Calculate -2i to the power of 2 and get -4.
\frac{8\left(2+2i\sqrt{3}\right)}{4-\left(-4\times 3\right)}\times 1
The square of \sqrt{3} is 3.
\frac{8\left(2+2i\sqrt{3}\right)}{4-\left(-12\right)}\times 1
Multiply -4 and 3 to get -12.
\frac{8\left(2+2i\sqrt{3}\right)}{4+12}\times 1
Multiply -1 and -12 to get 12.
\frac{8\left(2+2i\sqrt{3}\right)}{16}\times 1
Add 4 and 12 to get 16.
\frac{1}{2}\left(2+2i\sqrt{3}\right)\times 1
Divide 8\left(2+2i\sqrt{3}\right) by 16 to get \frac{1}{2}\left(2+2i\sqrt{3}\right).
\left(\frac{1}{2}\times 2+\frac{1}{2}\times \left(2i\right)\sqrt{3}\right)\times 1
Use the distributive property to multiply \frac{1}{2} by 2+2i\sqrt{3}.
\left(1+\frac{1}{2}\times \left(2i\right)\sqrt{3}\right)\times 1
Cancel out 2 and 2.
\left(1+i\sqrt{3}\right)\times 1
Multiply \frac{1}{2} and 2i to get i.
1+i\sqrt{3}
Use the distributive property to multiply 1+i\sqrt{3} by 1.