Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{8\left(2\sqrt{3}-2\right)}{\left(2\sqrt{3}+2\right)\left(2\sqrt{3}-2\right)}
Rationalize the denominator of \frac{8}{2\sqrt{3}+2} by multiplying numerator and denominator by 2\sqrt{3}-2.
\frac{8\left(2\sqrt{3}-2\right)}{\left(2\sqrt{3}\right)^{2}-2^{2}}
Consider \left(2\sqrt{3}+2\right)\left(2\sqrt{3}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(2\sqrt{3}-2\right)}{2^{2}\left(\sqrt{3}\right)^{2}-2^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{8\left(2\sqrt{3}-2\right)}{4\left(\sqrt{3}\right)^{2}-2^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{8\left(2\sqrt{3}-2\right)}{4\times 3-2^{2}}
The square of \sqrt{3} is 3.
\frac{8\left(2\sqrt{3}-2\right)}{12-2^{2}}
Multiply 4 and 3 to get 12.
\frac{8\left(2\sqrt{3}-2\right)}{12-4}
Calculate 2 to the power of 2 and get 4.
\frac{8\left(2\sqrt{3}-2\right)}{8}
Subtract 4 from 12 to get 8.
2\sqrt{3}-2
Cancel out 8 and 8.