Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\frac{\frac{8}{15}}{\left(\frac{18}{30}+\frac{5}{30}\right)\times \frac{4}{23}}
Least common multiple of 5 and 6 is 30. Convert \frac{3}{5} and \frac{1}{6} to fractions with denominator 30.
\frac{\frac{8}{15}}{\frac{18+5}{30}\times \frac{4}{23}}
Since \frac{18}{30} and \frac{5}{30} have the same denominator, add them by adding their numerators.
\frac{\frac{8}{15}}{\frac{23}{30}\times \frac{4}{23}}
Add 18 and 5 to get 23.
\frac{\frac{8}{15}}{\frac{23\times 4}{30\times 23}}
Multiply \frac{23}{30} times \frac{4}{23} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{8}{15}}{\frac{4}{30}}
Cancel out 23 in both numerator and denominator.
\frac{\frac{8}{15}}{\frac{2}{15}}
Reduce the fraction \frac{4}{30} to lowest terms by extracting and canceling out 2.
\frac{8}{15}\times \frac{15}{2}
Divide \frac{8}{15} by \frac{2}{15} by multiplying \frac{8}{15} by the reciprocal of \frac{2}{15}.
\frac{8\times 15}{15\times 2}
Multiply \frac{8}{15} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{8}{2}
Cancel out 15 in both numerator and denominator.
4
Divide 8 by 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}