\frac { 8 } { 1.6 } = \frac { 4 + 4 + [ - 3 ) } { E D }
Solve for D
D=\frac{1}{E}
E\neq 0
Solve for E
E=\frac{1}{D}
D\neq 0
Share
Copied to clipboard
DE\times \frac{8}{1.6}=4+4-3
Variable D cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by DE.
DE\times \frac{80}{16}=4+4-3
Expand \frac{8}{1.6} by multiplying both numerator and the denominator by 10.
DE\times 5=4+4-3
Divide 80 by 16 to get 5.
DE\times 5=8-3
Add 4 and 4 to get 8.
DE\times 5=5
Subtract 3 from 8 to get 5.
5ED=5
The equation is in standard form.
\frac{5ED}{5E}=\frac{5}{5E}
Divide both sides by 5E.
D=\frac{5}{5E}
Dividing by 5E undoes the multiplication by 5E.
D=\frac{1}{E}
Divide 5 by 5E.
D=\frac{1}{E}\text{, }D\neq 0
Variable D cannot be equal to 0.
DE\times \frac{8}{1.6}=4+4-3
Variable E cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by DE.
DE\times \frac{80}{16}=4+4-3
Expand \frac{8}{1.6} by multiplying both numerator and the denominator by 10.
DE\times 5=4+4-3
Divide 80 by 16 to get 5.
DE\times 5=8-3
Add 4 and 4 to get 8.
DE\times 5=5
Subtract 3 from 8 to get 5.
5DE=5
The equation is in standard form.
\frac{5DE}{5D}=\frac{5}{5D}
Divide both sides by 5D.
E=\frac{5}{5D}
Dividing by 5D undoes the multiplication by 5D.
E=\frac{1}{D}
Divide 5 by 5D.
E=\frac{1}{D}\text{, }E\neq 0
Variable E cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}