Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{8\left(\sqrt{10}+\sqrt{2}\right)}{\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)}
Rationalize the denominator of \frac{8}{\sqrt{10}-\sqrt{2}} by multiplying numerator and denominator by \sqrt{10}+\sqrt{2}.
\frac{8\left(\sqrt{10}+\sqrt{2}\right)}{\left(\sqrt{10}\right)^{2}-\left(\sqrt{2}\right)^{2}}
Consider \left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{8\left(\sqrt{10}+\sqrt{2}\right)}{10-2}
Square \sqrt{10}. Square \sqrt{2}.
\frac{8\left(\sqrt{10}+\sqrt{2}\right)}{8}
Subtract 2 from 10 to get 8.
\sqrt{10}+\sqrt{2}
Cancel out 8 and 8.