Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{8\times \frac{1}{4}-16\left(-\frac{1}{2}\right)^{3}\times \left(\frac{2}{3}\right)^{2}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Calculate -\frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{\frac{8}{4}-16\left(-\frac{1}{2}\right)^{3}\times \left(\frac{2}{3}\right)^{2}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Multiply 8 and \frac{1}{4} to get \frac{8}{4}.
\frac{2-16\left(-\frac{1}{2}\right)^{3}\times \left(\frac{2}{3}\right)^{2}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Divide 8 by 4 to get 2.
\frac{2-16\left(-\frac{1}{8}\right)\times \left(\frac{2}{3}\right)^{2}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\frac{2-\frac{16\left(-1\right)}{8}\times \left(\frac{2}{3}\right)^{2}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Express 16\left(-\frac{1}{8}\right) as a single fraction.
\frac{2-\frac{-16}{8}\times \left(\frac{2}{3}\right)^{2}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Multiply 16 and -1 to get -16.
\frac{2-\left(-2\times \left(\frac{2}{3}\right)^{2}\right)+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Divide -16 by 8 to get -2.
\frac{2-\left(-2\times \frac{4}{9}\right)+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{2-\frac{-2\times 4}{9}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Express -2\times \frac{4}{9} as a single fraction.
\frac{2-\frac{-8}{9}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Multiply -2 and 4 to get -8.
\frac{2-\left(-\frac{8}{9}\right)+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Fraction \frac{-8}{9} can be rewritten as -\frac{8}{9} by extracting the negative sign.
\frac{2+\frac{8}{9}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
The opposite of -\frac{8}{9} is \frac{8}{9}.
\frac{\frac{18}{9}+\frac{8}{9}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Convert 2 to fraction \frac{18}{9}.
\frac{\frac{18+8}{9}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Since \frac{18}{9} and \frac{8}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{26}{9}+8\left(-\frac{1}{2}\right)\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Add 18 and 8 to get 26.
\frac{\frac{26}{9}+\frac{8\left(-1\right)}{2}\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Express 8\left(-\frac{1}{2}\right) as a single fraction.
\frac{\frac{26}{9}+\frac{-8}{2}\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Multiply 8 and -1 to get -8.
\frac{\frac{26}{9}-4\times \frac{2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Divide -8 by 2 to get -4.
\frac{\frac{26}{9}+\frac{-4\times 2}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Express -4\times \frac{2}{3} as a single fraction.
\frac{\frac{26}{9}+\frac{-8}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Multiply -4 and 2 to get -8.
\frac{\frac{26}{9}-\frac{8}{3}\times 4}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Fraction \frac{-8}{3} can be rewritten as -\frac{8}{3} by extracting the negative sign.
\frac{\frac{26}{9}+\frac{-8\times 4}{3}}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Express -\frac{8}{3}\times 4 as a single fraction.
\frac{\frac{26}{9}+\frac{-32}{3}}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Multiply -8 and 4 to get -32.
\frac{\frac{26}{9}-\frac{32}{3}}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Fraction \frac{-32}{3} can be rewritten as -\frac{32}{3} by extracting the negative sign.
\frac{\frac{26}{9}-\frac{96}{9}}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Least common multiple of 9 and 3 is 9. Convert \frac{26}{9} and \frac{32}{3} to fractions with denominator 9.
\frac{\frac{26-96}{9}}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Since \frac{26}{9} and \frac{96}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{70}{9}}{\left(-\frac{1}{2}\right)^{3}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Subtract 96 from 26 to get -70.
\frac{-\frac{70}{9}}{-\frac{1}{8}+3\left(-\frac{1}{2}\right)\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\frac{-\frac{70}{9}}{-\frac{1}{8}+\frac{3\left(-1\right)}{2}\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Express 3\left(-\frac{1}{2}\right) as a single fraction.
\frac{-\frac{70}{9}}{-\frac{1}{8}+\frac{-3}{2}\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Multiply 3 and -1 to get -3.
\frac{-\frac{70}{9}}{-\frac{1}{8}-\frac{3}{2}\times \left(\frac{2}{3}\right)^{2}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Fraction \frac{-3}{2} can be rewritten as -\frac{3}{2} by extracting the negative sign.
\frac{-\frac{70}{9}}{-\frac{1}{8}-\frac{3}{2}\times \frac{4}{9}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\frac{-\frac{70}{9}}{-\frac{1}{8}+\frac{-3\times 4}{2\times 9}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Multiply -\frac{3}{2} times \frac{4}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{70}{9}}{-\frac{1}{8}+\frac{-12}{18}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Do the multiplications in the fraction \frac{-3\times 4}{2\times 9}.
\frac{-\frac{70}{9}}{-\frac{1}{8}-\frac{2}{3}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Reduce the fraction \frac{-12}{18} to lowest terms by extracting and canceling out 6.
\frac{-\frac{70}{9}}{-\frac{3}{24}-\frac{16}{24}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Least common multiple of 8 and 3 is 24. Convert -\frac{1}{8} and \frac{2}{3} to fractions with denominator 24.
\frac{-\frac{70}{9}}{\frac{-3-16}{24}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Since -\frac{3}{24} and \frac{16}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{70}{9}}{-\frac{19}{24}+\left(\frac{2}{3}\right)^{3}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Subtract 16 from -3 to get -19.
\frac{-\frac{70}{9}}{-\frac{19}{24}+\frac{8}{27}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Calculate \frac{2}{3} to the power of 3 and get \frac{8}{27}.
\frac{-\frac{70}{9}}{-\frac{171}{216}+\frac{64}{216}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Least common multiple of 24 and 27 is 216. Convert -\frac{19}{24} and \frac{8}{27} to fractions with denominator 216.
\frac{-\frac{70}{9}}{\frac{-171+64}{216}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Since -\frac{171}{216} and \frac{64}{216} have the same denominator, add them by adding their numerators.
\frac{-\frac{70}{9}}{-\frac{107}{216}+3\times \frac{2}{3}\left(-\frac{1}{2}\right)^{3}}
Add -171 and 64 to get -107.
\frac{-\frac{70}{9}}{-\frac{107}{216}+2\left(-\frac{1}{2}\right)^{3}}
Cancel out 3 and 3.
\frac{-\frac{70}{9}}{-\frac{107}{216}+2\left(-\frac{1}{8}\right)}
Calculate -\frac{1}{2} to the power of 3 and get -\frac{1}{8}.
\frac{-\frac{70}{9}}{-\frac{107}{216}+\frac{2\left(-1\right)}{8}}
Express 2\left(-\frac{1}{8}\right) as a single fraction.
\frac{-\frac{70}{9}}{-\frac{107}{216}+\frac{-2}{8}}
Multiply 2 and -1 to get -2.
\frac{-\frac{70}{9}}{-\frac{107}{216}-\frac{1}{4}}
Reduce the fraction \frac{-2}{8} to lowest terms by extracting and canceling out 2.
\frac{-\frac{70}{9}}{-\frac{107}{216}-\frac{54}{216}}
Least common multiple of 216 and 4 is 216. Convert -\frac{107}{216} and \frac{1}{4} to fractions with denominator 216.
\frac{-\frac{70}{9}}{\frac{-107-54}{216}}
Since -\frac{107}{216} and \frac{54}{216} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{70}{9}}{-\frac{161}{216}}
Subtract 54 from -107 to get -161.
-\frac{70}{9}\left(-\frac{216}{161}\right)
Divide -\frac{70}{9} by -\frac{161}{216} by multiplying -\frac{70}{9} by the reciprocal of -\frac{161}{216}.
\frac{-70\left(-216\right)}{9\times 161}
Multiply -\frac{70}{9} times -\frac{216}{161} by multiplying numerator times numerator and denominator times denominator.
\frac{15120}{1449}
Do the multiplications in the fraction \frac{-70\left(-216\right)}{9\times 161}.
\frac{240}{23}
Reduce the fraction \frac{15120}{1449} to lowest terms by extracting and canceling out 63.