Solve for x
x=3.2
Graph
Share
Copied to clipboard
\frac{\left(8\times 5+4\right)\times 10}{5\left(1\times 10+1\right)}=\frac{x}{0.4}
Divide \frac{8\times 5+4}{5} by \frac{1\times 10+1}{10} by multiplying \frac{8\times 5+4}{5} by the reciprocal of \frac{1\times 10+1}{10}.
\frac{2\left(4+5\times 8\right)}{1+10}=\frac{x}{0.4}
Cancel out 5 in both numerator and denominator.
\frac{2\left(4+40\right)}{1+10}=\frac{x}{0.4}
Multiply 5 and 8 to get 40.
\frac{2\times 44}{1+10}=\frac{x}{0.4}
Add 4 and 40 to get 44.
\frac{88}{1+10}=\frac{x}{0.4}
Multiply 2 and 44 to get 88.
\frac{88}{11}=\frac{x}{0.4}
Add 1 and 10 to get 11.
8=\frac{x}{0.4}
Divide 88 by 11 to get 8.
\frac{x}{0.4}=8
Swap sides so that all variable terms are on the left hand side.
x=8\times 0.4
Multiply both sides by 0.4.
x=3.2
Multiply 8 and 0.4 to get 3.2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}