Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{4\times 4\times 5}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3}
Cancel out 2 in both numerator and denominator.
\frac{16\times 5}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3}
Multiply 4 and 4 to get 16.
\frac{80}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3}
Multiply 16 and 5 to get 80.
\frac{80}{1173}\times \left(3x\right)^{6-3}\times 24^{3}
Multiply 23 and 51 to get 1173.
\frac{80}{1173}\times \left(3x\right)^{3}\times 24^{3}
Subtract 3 from 6 to get 3.
\frac{80}{1173}\times 3^{3}x^{3}\times 24^{3}
Expand \left(3x\right)^{3}.
\frac{80}{1173}\times 27x^{3}\times 24^{3}
Calculate 3 to the power of 3 and get 27.
\frac{720}{391}x^{3}\times 24^{3}
Multiply \frac{80}{1173} and 27 to get \frac{720}{391}.
\frac{720}{391}x^{3}\times 13824
Calculate 24 to the power of 3 and get 13824.
\frac{9953280}{391}x^{3}
Multiply \frac{720}{391} and 13824 to get \frac{9953280}{391}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\times 4\times 5}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{16\times 5}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3})
Multiply 4 and 4 to get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3})
Multiply 16 and 5 to get 80.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{1173}\times \left(3x\right)^{6-3}\times 24^{3})
Multiply 23 and 51 to get 1173.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{1173}\times \left(3x\right)^{3}\times 24^{3})
Subtract 3 from 6 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{1173}\times 3^{3}x^{3}\times 24^{3})
Expand \left(3x\right)^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{1173}\times 27x^{3}\times 24^{3})
Calculate 3 to the power of 3 and get 27.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{720}{391}x^{3}\times 24^{3})
Multiply \frac{80}{1173} and 27 to get \frac{720}{391}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{720}{391}x^{3}\times 13824)
Calculate 24 to the power of 3 and get 13824.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9953280}{391}x^{3})
Multiply \frac{720}{391} and 13824 to get \frac{9953280}{391}.
3\times \frac{9953280}{391}x^{3-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{29859840}{391}x^{3-1}
Multiply 3 times \frac{9953280}{391}.
\frac{29859840}{391}x^{2}
Subtract 1 from 3.