Evaluate
\frac{9953280x^{3}}{391}
Differentiate w.r.t. x
\frac{29859840x^{2}}{391}
Graph
Share
Copied to clipboard
\frac{4\times 4\times 5}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3}
Cancel out 2 in both numerator and denominator.
\frac{16\times 5}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3}
Multiply 4 and 4 to get 16.
\frac{80}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3}
Multiply 16 and 5 to get 80.
\frac{80}{1173}\times \left(3x\right)^{6-3}\times 24^{3}
Multiply 23 and 51 to get 1173.
\frac{80}{1173}\times \left(3x\right)^{3}\times 24^{3}
Subtract 3 from 6 to get 3.
\frac{80}{1173}\times 3^{3}x^{3}\times 24^{3}
Expand \left(3x\right)^{3}.
\frac{80}{1173}\times 27x^{3}\times 24^{3}
Calculate 3 to the power of 3 and get 27.
\frac{720}{391}x^{3}\times 24^{3}
Multiply \frac{80}{1173} and 27 to get \frac{720}{391}.
\frac{720}{391}x^{3}\times 13824
Calculate 24 to the power of 3 and get 13824.
\frac{9953280}{391}x^{3}
Multiply \frac{720}{391} and 13824 to get \frac{9953280}{391}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\times 4\times 5}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3})
Cancel out 2 in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{16\times 5}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3})
Multiply 4 and 4 to get 16.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{23\times 51}\times \left(3x\right)^{6-3}\times 24^{3})
Multiply 16 and 5 to get 80.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{1173}\times \left(3x\right)^{6-3}\times 24^{3})
Multiply 23 and 51 to get 1173.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{1173}\times \left(3x\right)^{3}\times 24^{3})
Subtract 3 from 6 to get 3.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{1173}\times 3^{3}x^{3}\times 24^{3})
Expand \left(3x\right)^{3}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{80}{1173}\times 27x^{3}\times 24^{3})
Calculate 3 to the power of 3 and get 27.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{720}{391}x^{3}\times 24^{3})
Multiply \frac{80}{1173} and 27 to get \frac{720}{391}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{720}{391}x^{3}\times 13824)
Calculate 24 to the power of 3 and get 13824.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{9953280}{391}x^{3})
Multiply \frac{720}{391} and 13824 to get \frac{9953280}{391}.
3\times \frac{9953280}{391}x^{3-1}
The derivative of ax^{n} is nax^{n-1}.
\frac{29859840}{391}x^{3-1}
Multiply 3 times \frac{9953280}{391}.
\frac{29859840}{391}x^{2}
Subtract 1 from 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}