Evaluate
32400
Factor
2^{4}\times 3^{4}\times 5^{2}
Share
Copied to clipboard
\frac{8^{2}\times 8^{3}\times 3^{4}\times \left(\frac{5}{4}\right)^{2}}{2^{3}\times \left(2^{2}\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{8^{5}\times 3^{4}\times \left(\frac{5}{4}\right)^{2}}{2^{3}\times \left(2^{2}\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 3 to get 5.
\frac{8^{5}\times 3^{4}\times \left(\frac{5}{4}\right)^{2}}{2^{3}\times 2^{4}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{8^{5}\times 3^{4}\times \left(\frac{5}{4}\right)^{2}}{2^{7}}
To multiply powers of the same base, add their exponents. Add 3 and 4 to get 7.
\frac{32768\times 3^{4}\times \left(\frac{5}{4}\right)^{2}}{2^{7}}
Calculate 8 to the power of 5 and get 32768.
\frac{32768\times 81\times \left(\frac{5}{4}\right)^{2}}{2^{7}}
Calculate 3 to the power of 4 and get 81.
\frac{2654208\times \left(\frac{5}{4}\right)^{2}}{2^{7}}
Multiply 32768 and 81 to get 2654208.
\frac{2654208\times \frac{25}{16}}{2^{7}}
Calculate \frac{5}{4} to the power of 2 and get \frac{25}{16}.
\frac{4147200}{2^{7}}
Multiply 2654208 and \frac{25}{16} to get 4147200.
\frac{4147200}{128}
Calculate 2 to the power of 7 and get 128.
32400
Divide 4147200 by 128 to get 32400.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}