Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8+9i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 3+i.
\frac{\left(8+9i\right)\left(3+i\right)}{3^{2}-i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+9i\right)\left(3+i\right)}{10}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 3+8i+9i\times 3+9i^{2}}{10}
Multiply complex numbers 8+9i and 3+i like you multiply binomials.
\frac{8\times 3+8i+9i\times 3+9\left(-1\right)}{10}
By definition, i^{2} is -1.
\frac{24+8i+27i-9}{10}
Do the multiplications in 8\times 3+8i+9i\times 3+9\left(-1\right).
\frac{24-9+\left(8+27\right)i}{10}
Combine the real and imaginary parts in 24+8i+27i-9.
\frac{15+35i}{10}
Do the additions in 24-9+\left(8+27\right)i.
\frac{3}{2}+\frac{7}{2}i
Divide 15+35i by 10 to get \frac{3}{2}+\frac{7}{2}i.
Re(\frac{\left(8+9i\right)\left(3+i\right)}{\left(3-i\right)\left(3+i\right)})
Multiply both numerator and denominator of \frac{8+9i}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{\left(8+9i\right)\left(3+i\right)}{3^{2}-i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+9i\right)\left(3+i\right)}{10})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 3+8i+9i\times 3+9i^{2}}{10})
Multiply complex numbers 8+9i and 3+i like you multiply binomials.
Re(\frac{8\times 3+8i+9i\times 3+9\left(-1\right)}{10})
By definition, i^{2} is -1.
Re(\frac{24+8i+27i-9}{10})
Do the multiplications in 8\times 3+8i+9i\times 3+9\left(-1\right).
Re(\frac{24-9+\left(8+27\right)i}{10})
Combine the real and imaginary parts in 24+8i+27i-9.
Re(\frac{15+35i}{10})
Do the additions in 24-9+\left(8+27\right)i.
Re(\frac{3}{2}+\frac{7}{2}i)
Divide 15+35i by 10 to get \frac{3}{2}+\frac{7}{2}i.
\frac{3}{2}
The real part of \frac{3}{2}+\frac{7}{2}i is \frac{3}{2}.