Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 9+3i.
\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(8+4i\right)\left(9+3i\right)}{90}
By definition, i^{2} is -1. Calculate the denominator.
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90}
Multiply complex numbers 8+4i and 9+3i like you multiply binomials.
\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90}
By definition, i^{2} is -1.
\frac{72+24i+36i-12}{90}
Do the multiplications in 8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right).
\frac{72-12+\left(24+36\right)i}{90}
Combine the real and imaginary parts in 72+24i+36i-12.
\frac{60+60i}{90}
Do the additions in 72-12+\left(24+36\right)i.
\frac{2}{3}+\frac{2}{3}i
Divide 60+60i by 90 to get \frac{2}{3}+\frac{2}{3}i.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{\left(9-3i\right)\left(9+3i\right)})
Multiply both numerator and denominator of \frac{8+4i}{9-3i} by the complex conjugate of the denominator, 9+3i.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{9^{2}-3^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{\left(8+4i\right)\left(9+3i\right)}{90})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3i^{2}}{90})
Multiply complex numbers 8+4i and 9+3i like you multiply binomials.
Re(\frac{8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right)}{90})
By definition, i^{2} is -1.
Re(\frac{72+24i+36i-12}{90})
Do the multiplications in 8\times 9+8\times \left(3i\right)+4i\times 9+4\times 3\left(-1\right).
Re(\frac{72-12+\left(24+36\right)i}{90})
Combine the real and imaginary parts in 72+24i+36i-12.
Re(\frac{60+60i}{90})
Do the additions in 72-12+\left(24+36\right)i.
Re(\frac{2}{3}+\frac{2}{3}i)
Divide 60+60i by 90 to get \frac{2}{3}+\frac{2}{3}i.
\frac{2}{3}
The real part of \frac{2}{3}+\frac{2}{3}i is \frac{2}{3}.